Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biotechnol Bioeng ; 116(10): 2730-2741, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31282995

RESUMO

It is widely believed that the differentiation of embryonic stem cells (ESCs) into viable endothelial cells (ECs) for use in vascular tissue engineering can be enhanced by mechanical forces. In our previous work, we reported that shear stress enhanced important EC functional genes on a CD31+ /CD45- cell population derived from mouse ESC committed to the EC lineage. In the present study, in contrast to the effects of shear stress on this cell population, we observed that cyclic strain significantly reduced the expression of EC-specific marker genes (vWF, VE-cadherin, and PECAM-1), tight junction protein genes (ZO-1, OCLD, and CLD5), and vasoactive genes (eNOS and ET1), while it did not alter the expression of COX2. Taken together, these studies indicate that only shear stress, not cyclic strain, is a useful mechanical stimulus for enhancing the properties of CD31+ /CD45- cells for use as EC in vascular tissue engineering. To begin examining the mechanisms controlling cyclic strain-induced suppression of gene expression in CD31+ /CD45- cells, we depleted the heparan sulfate (HS) component of the glycocalyx, blocked integrins, and silenced the HS proteoglycan syndecan-4 in separate experiments. All of these treatments resulted in the reversal of cyclic strain-induced gene suppression. The current study and our previous work provide a deeper understanding of the mechanisms that balance the influence of cyclic strain and shear stress in endothelial cells.


Assuntos
Células Endoteliais/metabolismo , Regulação da Expressão Gênica , Proteoglicanas de Heparan Sulfato/biossíntese , Integrinas/biossíntese , Mecanotransdução Celular , Células-Tronco Embrionárias Murinas/metabolismo , Sindecana-4/biossíntese , Animais , Células Endoteliais/citologia , Glicocálix/metabolismo , Camundongos , Células-Tronco Embrionárias Murinas/citologia , Engenharia Tecidual
2.
Biotechnol Bioeng ; 109(2): 583-94, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21837663

RESUMO

It has been shown that shear stress plays a critical role in promoting endothelial cell (EC) differentiation from embryonic stem cell (ESC)-derived ECs. However, the underlying mechanisms mediating shear stress effects in this process have yet to be investigated. It has been reported that the glycocalyx component heparan sulfate proteoglycan (HSPG) mediates shear stress mechanotransduction in mature EC. In this study, we investigated whether cell surface HSPG plays a role in shear stress modulation of EC phenotype. ESC-derived EC were subjected to shear stress (5 dyn/cm(2)) for 8 h with or without heparinase III (Hep III) that digests heparan sulfate. Immunostaining showed that ESC-derived EC surfaces contain abundant HSPG, which could be cleaved by Hep III. We observed that shear stress significantly increased the expression of vascular EC-specific marker genes (vWF, VE-cadherin, PECAM-1). The effect of shear stress on expression of tight junction protein genes (ZO-1, OCLD, CLD5) was also evaluated. Shear stress increased the expression of ZO-1 and CLD5, while it did not alter the expression of OCLD. Shear stress increased expression of vasodilatory genes (eNOS, COX-2), while it decreased the expression of the vasoconstrictive gene ET1. After reduction of HSPG with Hep III, the shear stress-induced expression of vWF, VE-cadherin, ZO-1, eNOS, and COX-2, were abolished, suggesting that shear stress-induced expression of these genes depends on HSPG. These findings indicate for the first time that HSPG is a mechanosensor mediating shear stress-induced EC differentiation from ESC-derived EC cells.


Assuntos
Células-Tronco Embrionárias/química , Células Endoteliais/química , Células Endoteliais/metabolismo , Regulação da Expressão Gênica , Proteoglicanas de Heparan Sulfato/metabolismo , Animais , Fenômenos Biomecânicos/fisiologia , Proteínas de Transporte/metabolismo , Diferenciação Celular/fisiologia , Histocitoquímica , Mecanotransdução Celular , Proteínas de Membrana/metabolismo , Camundongos , Polissacarídeo-Liases/farmacologia , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA