Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Mater Sci Mater Med ; 27(11): 165, 2016 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-27655431

RESUMO

The present study reports construction of wound dressing materials from degradable natural polymers such as hydroxy derivatives of carboxylic acids (PHAs) and 3-hydroxybutyrate/4-hydroxybutyrate [P(3HB/4HB)] as copolymer. The developed polymer films and electrospun membranes were evaluated for its wound healing properties with Grafts-elastic nonwoven membranes carrying fibroblast cells derived from adipose tissue multipotent mesenchymal stem cells. The efficacy of nonwoven membranes of P(3HB/4HB) carrying the culture of allogenic fibroblasts was assessed against model skin defects in Wistar rats. The morphological, histological and molecular studies revealed the presence of fibroblasts on dressing materials which facilitated wound healing, vascularization and regeneration. Further it was also observed that cells secreted extracellular matrix proteins which formed a layer on the surface of membranes and promoted the migration of epidermal cells from the neighboring tissues surrounding the wound. The wounds under the P(3HB/4HB) membrane carrying cells healed 1.4 times faster than the wounds under the cell-free membrane and 3.5 times faster than the wounds healing under the eschar (control).The complete wound healing process was achieved at Day 14. Thus the study highlights the importance of nonwoven membranes developed from degradable P(3HB/4HB) polymers in reducing inflammation, enhancing angiogenic properties of skin and facilitating better wound healing process.


Assuntos
Ácido 3-Hidroxibutírico/química , Bandagens , Poli-Hidroxialcanoatos/química , Dermatopatias/metabolismo , Pele/patologia , Cicatrização , Tecido Adiposo/citologia , Tecido Adiposo/metabolismo , Animais , Materiais Biocompatíveis/química , Fibroblastos/metabolismo , Teste de Materiais , Membranas Artificiais , Células-Tronco Multipotentes/citologia , Polímeros/química , Ratos , Ratos Wistar , Regeneração , Transplante de Pele , Alicerces Teciduais
2.
J Environ Sci Health B ; 51(2): 113-125, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26621217

RESUMO

Polymer poly(3-hydroxybutyrate) [P(3HB)] has been used as a matrix in slow-release formulations of the herbicide metribuzin (MET). Physical P(3HB)/MET mixtures in the form of solutions, powders, and emulsions were used to construct different metribuzin formulations (films, granules, pellets, and microparticles). SEM, X-Ray, and DSC proved the stability of these formulations incubated in sterile water in vitro for long periods of time (up to 49 days). Metribuzin release from the polymer matrix has been also studied. By varying the shape of formulations (microparticles, granules, films, and pellets), we were able to control the release time of metribuzin, increasing or decreasing it.

3.
Dent J (Basel) ; 11(2)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36826175

RESUMO

Dental implant therapy is a well-accepted treatment modality. Despite good predictability and success in the early stages, the risk of postplacement inflammation in the long-term periods remains an urgent problem. Surgical access and decontamination with chemical and mechanical methods are more effective than antibiotic therapy. The search for the optimal and predictable way for peri-implantitis treatment remains relevant. Here, we evaluated four cleaning methods for their ability to preserve the implant's surface for adequate mesenchymal stem cell adhesion and differentiation. Implants isolated after peri-implantitis were subjected to cleaning with diamond bur; Ti-Ni alloy brush, air-flow, or Er,Cr:YSGG laser and cocultured with mice MSC for five weeks. Dental bur and titanium brushes destroyed the implants' surfaces and prevented MSC attachment. Air-flow and laser minimally affected the dental implant surface microroughness, which was initially designed for good cell adhesion and bone remodeling and to provide full microbial decontamination. Anodized with titanium dioxide and sandblasted with aluminum oxide, acid-etched implants appeared to be better for laser treatment. In implants sandblasted with aluminum oxide, an acid-etched surface better preserves its topology when treated with the air-flow. These cleaning methods minimally affect the implant's surface, so it maintains the capability to absorb osteogenic cells for further division and differentiation.

4.
Mol Ther Nucleic Acids ; 32: 267-288, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37090419

RESUMO

Here, we present DNA aptamers capable of specific binding to glial tumor cells in vitro, ex vivo, and in vivo for visualization diagnostics of central nervous system tumors. We selected the aptamers binding specifically to the postoperative human glial primary tumors and not to the healthy brain cells and meningioma, using a modified process of systematic evolution of ligands by exponential enrichment to cells; sequenced and analyzed ssDNA pools using bioinformatic tools and identified the best aptamers by their binding abilities; determined three-dimensional structures of lead aptamers (Gli-55 and Gli-233) with small-angle X-ray scattering and molecular modeling; isolated and identified molecular target proteins of the aptamers by mass spectrometry; the potential binding sites of Gli-233 to the target protein and the role of post-translational modifications were verified by molecular dynamics simulations. The anti-glioma aptamers Gli-233 and Gli-55 were used to detect circulating tumor cells in liquid biopsies. These aptamers were used for in situ, ex vivo tissue staining, histopathological analyses, and fluorescence-guided tumor and PET/CT tumor visualization in mice with xenotransplanted human astrocytoma. The aptamers did not show in vivo toxicity in the preclinical animal study. This study demonstrates the potential applications of aptamers for precise diagnostics and fluorescence-guided surgery of brain tumors.

5.
Nucleic Acid Ther ; 32(6): 497-506, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35921069

RESUMO

Cisplatin is an effective drug for treating various cancer types. However, it is highly toxic for both healthy and tumor cells. Therefore, there is a need to reduce its therapeutic dose and increase targeted bioavailability. One of the ways to achieve this could be the coating of cisplatin with polysaccharides and specific carriers for targeted delivery. Nucleic acid aptamers could be used as carriers for the specific delivery of medicine to cancer cells. Cisplatin-arabinogalactan-aptamer (Cis-AG-Ap) conjugate was synthesized based on Cis-dichlorodiammineplatinum, Siberian larch arabinogalactan, and aptamer AS-42 specific to heat-shock proteins (HSP) 71 kDa (Hspa8) and HSP 90-beta (Hsp90ab1). The antitumor effect was estimated using ascites and metastatic Ehrlich tumor models. Cis-AG-Ap toxicity was assessed by blood biochemistry on healthy mice. Here, we demonstrated enhanced anticancer activity of Cis-AG-Ap and its specific accumulation in tumor foci. It was shown that targeted delivery allowed a 15-fold reduction in the therapeutic dose of cisplatin and its toxicity. Cis-AG-Ap sufficiently suppressed the growth of Ehrlich's ascites carcinoma, the mass and extent of tumor metastasis in vivo. Arabinogalactan and the aptamers promoted cisplatin efficiency by enhancing its bioavailability. The described strategy could be very promising for targeted anticancer therapy.


Assuntos
Ácidos Nucleicos , Animais , Camundongos , Cisplatino/farmacologia
6.
Toxicol Rep ; 6: 74-90, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30581762

RESUMO

The morphotypes of human macrophages (MPh) were studied in the culture on nano-structured biopolymer substrates, made from polyhydroxyalcanoates (PHAs) of five various monomer compositions, followed by the solvent evaporation. Its surface relief, which was further in direct contact with human cells in vitro, was analyzed by atomic force microscopy (AFM) and scanning electron microscopy (SEM). It was shown, that the features of the micro/nano relief depend on the monomeric composition of the polymer substrates. Monocytes (MN) of patients with atherosclerosis and cardiac ischemia, undergoing stenting and conventional anti-atherosclerotic therapy, were harvested prior and after stenting. MN were isolated and cultured, with the transformation into MPh in direct contact with biopolymer culture substrates with different monomer composition and nano-reliefs, and transformed into MPh, in comparison with the same process on standard culture plastic. Sub-populations of cells with characteristic morphology in each phenotypic class were described, and their quantitative ratios for each sample of polymers were counted as an intermediate result in the development of "smart" material for cardiovascular devices. The results obtained allow us to assume, that the processes of MPh differentiation and polarization in vitro depend not only on the features of the micro/nano relief of biopolymer substrates, but also on the initial state of MN in vivo and general response of patients.

7.
Pest Manag Sci ; 73(5): 925-935, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-27447847

RESUMO

BACKGROUND: An important line of research is the development of a new generation of formulations with targeted and controlled release of the pesticide, using matrices made from biodegradable materials. In this study, slow-release formulations of the fungicide tebuconazole (TEB) have been prepared by embedding it into the matrix of poly-3-hydroxybutyrate (P3HB) in the form of films, microgranules and pellets. RESULTS: The average rates of P3HB degradation were determined by the geometry of the formulation, reaching, for 63 days, 0.095-0.116, 0.081-0.083 and 0.030-0.055 mg day-1 for films, microgranules and pellets respectively. The fungicidal activity of P3HB/TEB against the plant pathogen Fusarium moniliforme was compared with that of the commercial formulation Raxil Ultra. A pronounced fungicidal effect of the experimental P3HB/TEB formulations was observed in 2-4 weeks after application, and it was retained for 8 weeks, without affecting significantly the development of soil aboriginal microflora. CONCLUSION: TEB release can be regulated by the process employed to fabricate the formulation and the fungicide loading, and the TEB accumulates in the soil gradually, as the polymer is degraded. The experimental forms of TEB embedded in the slowly degraded P3HB can be used as a basis for developing slow-release fungicide formulations. © 2016 Society of Chemical Industry.


Assuntos
Ecossistema , Fusarium/efeitos dos fármacos , Fusarium/crescimento & desenvolvimento , Hidroxibutiratos/química , Poliésteres/química , Microbiologia do Solo , Triazóis/química , Triazóis/farmacologia , Portadores de Fármacos/química , Portadores de Fármacos/metabolismo , Composição de Medicamentos , Liberação Controlada de Fármacos , Fungicidas Industriais/química , Fungicidas Industriais/farmacologia , Hidroxibutiratos/metabolismo , Poliésteres/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA