Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Pediatr Cardiol ; 40(4): 857-864, 2019 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-30840104

RESUMO

Children with myocarditis have increased risk of ventricular tachycardia (VT) due to myocardial inflammation and remodeling. There is currently no accepted method for VT risk stratification in this population. We hypothesized that personalized models developed from cardiac late gadolinium enhancement magnetic resonance imaging (LGE-MRI) could determine VT risk in patients with myocarditis using a previously-validated protocol. Personalized three-dimensional computational cardiac models were reconstructed from LGE-MRI scans of 12 patients diagnosed with myocarditis. Four patients with clinical VT and eight patients without VT were included in this retrospective analysis. In each model, we incorporated a personalized spatial distribution of fibrosis and myocardial fiber orientations. Then, VT inducibility was assessed in each model by pacing rapidly from 26 sites distributed throughout both ventricles. Sustained reentrant VT was induced from multiple pacing sites in all patients with clinical VT. In the eight patients without clinical VT, we were unable to induce sustained reentry in our simulations using rapid ventricular pacing. Application of our non-invasive approach in children with myocarditis has the potential to correctly identify those at risk for developing VT.


Assuntos
Ventrículos do Coração/diagnóstico por imagem , Imageamento Tridimensional/métodos , Imagem Cinética por Ressonância Magnética/métodos , Miocardite/complicações , Taquicardia Ventricular/diagnóstico por imagem , Adolescente , Criança , Simulação por Computador , Feminino , Gadolínio , Ventrículos do Coração/fisiopatologia , Humanos , Masculino , Projetos Piloto , Estudos Retrospectivos , Medição de Risco/métodos , Taquicardia Ventricular/etiologia
2.
Neurobiol Lang (Camb) ; 4(3): 420-434, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37588129

RESUMO

The existence of a neural representation for whole words (i.e., a lexicon) is a common feature of many models of speech processing. Prior studies have provided evidence for a visual lexicon containing representations of whole written words in an area of the ventral visual stream known as the visual word form area. Similar experimental support for an auditory lexicon containing representations of spoken words has yet to be shown. Using functional magnetic resonance imaging rapid adaptation techniques, we provide evidence for an auditory lexicon in the auditory word form area in the human left anterior superior temporal gyrus that contains representations highly selective for individual spoken words. Furthermore, we show that familiarization with novel auditory words sharpens the selectivity of their representations in the auditory word form area. These findings reveal strong parallels in how the brain represents written and spoken words, showing convergent processing strategies across modalities in the visual and auditory ventral streams.

3.
Curr Opin Biomed Eng ; 5: 21-28, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29546250

RESUMO

The goal of this article is to review advances in computational modeling of the heart, with a focus on recent non-invasive clinical imaging- and simulation-based strategies aimed at improving the diagnosis and treatment of patients with arrhythmias and structural heart disease. Following a brief overview of the field of computational cardiology, we present recent applications of the personalized virtual-heart approach in predicting the optimal targets for infarct-related ventricular tachycardia and atrial fibrillation ablation, and in determining risk of sudden cardiac death in myocardial infarction patients. The hope is that with such models at the patient bedside, therapies could be improved, invasiveness of diagnostic procedures minimized, and health-care costs reduced.

4.
Nat Biomed Eng ; 2(10): 732-740, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-30847259

RESUMO

Ventricular tachycardia (VT), which can lead to sudden cardiac death, occurs frequently in patients with myocardial infarction. Catheter-based radiofrequency ablation of cardiac tissue has achieved only modest efficacy, owing to the inaccurate identification of ablation targets by current electrical mapping techniques, which can lead to extensive lesions and to a prolonged, poorly tolerated procedure. Here we show that personalized virtual-heart technology based on cardiac imaging and computational modelling can identify optimal infarct-related VT ablation targets in retrospective animal (5 swine) and human studies (21 patients) and in a prospective feasibility study (5 patients). We first assessed in retrospective studies (one of which included a proportion of clinical images with artifacts) the capability of the technology to determine the minimum-size ablation targets for eradicating all VTs. In the prospective study, VT sites predicted by the technology were targeted directly, without relying on prior electrical mapping. The approach could improve infarct-related VT ablation guidance, where accurate identification of patient-specific optimal targets could be achieved on a personalized virtual heart prior to the clinical procedure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA