Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Am J Physiol Cell Physiol ; 326(2): C622-C631, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38189136

RESUMO

The recently discovered ion channel TMEM63A has biophysical features distinctive for mechano-gated cation channels, activating at high pressures with slow kinetics while not inactivating. However, some biophysical properties are less clear, including no information on its function in whole cells. The aim of this study is to expand the TMEM63A biophysical characterization and examine the function in whole cells. Piezo1-knockout HEK293T cells were cotransfected with human TMEM63A and green fluorescent protein (GFP), and macroscopic currents in cell-attached patches were recorded by high-speed pressure clamp at holding voltages from -120 to -20 mV with 0-100 mmHg patch suction for 1 s. HEK293 cells cotransfected with TMEM63A and GCaMP5 were seeded onto polydimethylsiloxane (PDMS) membrane, and the response to 3-12 s of 1%-15% whole cell isotropic (equi-biaxial) stretch induced by an IsoStretcher was measured by the change in intracellular calcium ([Ca2+]i) and presented as (ΔF/F0 > 1). Increasing patch pressures activated TMEM63A currents with accelerating activation kinetics and current amplitudes that were pressure dependent but voltage independent. TMEM63A currents were plateaued within 2 s, recovered quickly, and were sensitive to Gd3+. In whole cells stretched on flexible membranes, radial stretch increased the [Ca2+]i responses in a larger proportion of cells cotransfected with TMEM63A and GCaMP5 than GCaMP5-only controls. TMEM63A currents are force activated and voltage insensitive, have a high threshold for pressure activation with slow activation and deactivation, and lack inactivation over 5 s. TMEM63A has the net polarity and kinetics that would depolarize plasma membranes and increase inward currents, contributing to a sustained [Ca2+]i increase in response to high stretch.NEW & NOTEWORTHY TMEM63A has biophysical features distinctive for mechano-gated cation channels, but some properties are less clear, including no functional information in whole cells. We report that pressure-dependent yet voltage-independent TMEM63A currents in cell membrane patches correlated with cell size. In addition, radial stretch of whole cells on flexible membranes increased the [Ca2+]i responses more in TMEM63A-transfected cells. Inward TMEM63A currents in response to high stretch can depolarize plasma membranes and contribute to a sustained [Ca2+]i increase.


Assuntos
Canais Iônicos , Humanos , Cátions/metabolismo , Membrana Celular/metabolismo , Células HEK293 , Canais Iônicos/metabolismo , Cinética , Potenciais da Membrana/fisiologia
2.
Biochem Biophys Res Commun ; 665: 202-207, 2023 07 12.
Artigo em Inglês | MEDLINE | ID: mdl-37167808

RESUMO

Apelin and APJ receptor play an important role in the regulating cardiovascular function; however, conflicting results have been reported regarding the effect of apelin on cardiovascular regulation. In this study, blood pressure and heart rate were measured by femoral arterial catheterization; and cardiac contractility was recorded by left ventricular catheterization through the right carotid artery in rats before and after intravenous administration of [pyr1]-apelin-13. The results show that intravenous administration of apelin-13 caused a dramatic reduction in BP but did not significantly alter heart rate and contractility. To study the mechanism of the apelin-induced depressor response, isometric tension was measured in isolated mesenteric arteries using a myograph approach. Surprisingly, treatment of the arteries with [pyr1]-apelin-13 did not cause relaxation of mesenteric arteries preconstricted with norepinephrine; however, treatment with plasma collected from rats that received intravenous administration of [pyr1]-apelin-13 caused pronounced relaxation of isolated arteries. Incubation with the guanylyl cyclase inhibitor, ODQ, blocked NO-induced relaxation, but did not significantly alter the relaxation response to the plasma from apelin-treated rats. Taken together, these findings demonstrate that intravenous injection of apelin causes a significant depressor response that is mediated by a NO-independent mechanism involving an unidentified substance released into the bloodstream leading to vasodilation.


Assuntos
Vasodilatação , Ratos , Animais , Apelina , Pressão Sanguínea , Receptores de Apelina , Administração Intravenosa
3.
Int J Mol Sci ; 24(13)2023 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-37446080

RESUMO

Mechanisms by which BKCa (large-conductance calcium-sensitive potassium) channels are involved in vascular remodeling in hypertension are not fully understood. Vascular smooth muscle cell (VSMC) proliferation and vascular morphology were compared between hypertensive and normotensive rats. BKCa channel activity, protein expression, and interaction with IP3R (inositol 1,4,5-trisphosphate receptor) were examined using patch clamp, Western blot analysis, and coimmunoprecipitation. On inside-out patches of VSMCs, the Ca2+-sensitivity and voltage-dependence of BKCa channels were similar between hypertensive and normotensive rats. In whole-cell patch clamp configuration, treatment of cells with the IP3R agonist, Adenophostin A (AdA), significantly increased BKCa channel currents in VSMCs of both strains of rats, suggesting IP3R-BKCa coupling; however, the AdA-induced increases in BKCa currents were attenuated in VSMCs of hypertensive rats, indicating possible IP3R-BKCa decoupling, causing BKCa dysfunction. Co-immunoprecipitation and Western blot analysis demonstrated that BKCa and IP3R proteins were associated together in VSMCs; however, the association of BKCa and IP3R proteins was dramatically reduced in VSMCs of hypertensive rats. Genetic disruption of IP3R-BKCa coupling using junctophilin-2 shRNA dramatically augmented Ang II-induced proliferation in VSMCs of normotensive rats. Subcutaneous infusion of NS1619, a BKCa opener, to reverse BKCa dysfunction caused by IP3R-BKCa decoupling significantly attenuated vascular hypertrophy in hypertensive rats. In summary, the data from this study demonstrate that loss of IP3R-BKCa coupling in VSMCs induces BKCa channel dysfunction, enhances VSMC proliferation, and thus, may contribute to vascular hypertrophy in hypertension.


Assuntos
Hipertensão , Músculo Liso Vascular , Ratos , Animais , Ratos Endogâmicos SHR , Potenciais da Membrana , Músculo Liso Vascular/metabolismo , Remodelação Vascular , Miócitos de Músculo Liso/metabolismo , Canais de Cálcio/metabolismo , Hipertensão/metabolismo
5.
J Biomol Struct Dyn ; : 1-16, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38385482

RESUMO

The aim of this research is to examine possible neurological activity of methanol, ethyl acetate, and aqueous extracts of Hygrophila spinosa and identify possible lead compounds through in silico analysis. In vivo, neuropharmacological activity was evaluated by using four distinct neuropharmacological assessment assays. Previously reported GC-MS data and earlier literature were utilized to identify the phytochemicals present in Hygrophila spinosa. Computational studies notably molecular docking and molecular dynamic simulations were conducted with responsible receptors to assess the stability of the best interacting compound. Pharmacokinetics properties like absorption, distribution, metabolism, excretion, and toxicity were considered to evaluate the drug likeliness properties of the identified compounds. All the in vivo results support the notion that different extracts (methanol, ethyl acetate, and aqueous) of Hygrophila spinosa have significant (*p = 0.05) sedative-hypnotic, anxiolytic, and anti-depressant activity. Among all the extracts, specifically methanol extracts of Hygrophila spinosa (MHS 400 mg/kg.b.w.) showed better sedative, anxiolytic and antidepressant activity than aqueous and ethyl acetate extracts. In silico molecular docking analysis revealed that among 53 compounds 7 compounds showed good binding affinities and one compound, namely apomorphine (CID: 6005), surprisingly showed promising binding affinity to all the receptors . An analysis of molecular dynamics simulations confirmed that apomorphine (CID: 6005) had a high level of stability at the protein binding site. Evidence suggests that Hygrophila spinosa has significant sedative, anxiolytic, and antidepressant activity. In silico analysis revealed that a particular compound (apomorphine) is responsible for this action. Further research is required in order to establish apomorphine as a drug for anxiety, depression, and sleep disorders.Communicated by Ramaswamy H. Sarma.

6.
Pharmaceuticals (Basel) ; 16(4)2023 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-37111357

RESUMO

Apelin, by stimulation of APJ receptors, induces transient blood pressure (BP) reduction and positive inotropic effects. APJ receptors share high homology with the Ang II type 1 receptor; thus, apelin was proposed to play a protective role in cardiovascular disease by antagonizing the actions of Ang II. In this regard, apelin and apelin-mimetics are currently being studied in clinical trials. However, the chronic effect of apelin in cardiovascular regulation has not been fully investigated. In the current study, blood pressure (BP) and heart rate (HR) were recorded using a telemetry implantation approach in conscious rats, before and during chronic subcutaneous infusion of apelin-13, using osmotic minipumps. At the end of the recording, the cardiac myocyte morphology was examined using H&E staining, and cardiac fibrosis was evaluated by Sirius Red in each group of rats. The results demonstrated that the chronic infusion of apelin-13 did not change either BP or HR. However, under the same condition, the chronic infusion of Ang II induced significant BP elevation, cardiac hypertrophy, and fibrosis. Co-administration of apelin-13 did not significantly alter the Ang II-induced elevation in BP, changes in cardiac morphology, and fibrosis. Taken together, our experiments showed an unexpected result indicating that the chronic administration of apelin-13 did not alter basal BP, nor did it change Ang II-induced hypertension and cardiac hypertrophy. The findings suggest that an APJ receptor biased agonist could be a better therapeutic alternative for treatment of hypertension.

7.
Front Pharmacol ; 12: 608523, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33664668

RESUMO

Cardiac hypertrophy is an adaptive response to cardiac overload initially but turns into a decompensated condition chronically, leading to heart failure and sudden cardiac death. The molecular mechanisms involved in cardiac hypertrophy and the signaling pathways that contribute to the switch from compensation to decompensation are not fully clear. The aim of the current study was to examine the role of PI3-kinases Class I (PI3KC1) and Class III (PI3KC3) in angiotensin (Ang) II-induced cardiac hypertrophy. The results demonstrate that treatment of cardiomyocytes with Ang II caused dose-dependent increases in autophagy, with an increasing phase followed by a decreasing phase. Ang II-induced autophagic increases were potentiated by inhibition of PI3KC1 with LY294002, but were impaired by inhibition of PI3KC3 with 3-methyladenine (3-MA). In addition, blockade of PI3KC1 significantly attenuated Ang II-induced ROS production and cardiomyocyte hypertrophy. In contrast, blockade of PI3KC3 potentiated Ang II-induced ROS production and cardiac hypertrophy. Moreover, blockade of PI3KC1 by overexpression of dominant negative p85 subunit of PI3KC1 significantly attenuated Ang II-induced cardiac hypertrophy in normotensive rats. Taken together, these results demonstrate that both PI3KC1 and PI3KC3 are involved in Ang II-induced cardiac hypertrophy by different mechanisms. Activation of PI3KC1 impairs autophagy activity, leading to accumulation of mitochondrial ROS, and, hence, cardiac hypertrophy. In contrast, activation of PI3KC3 improves autophagy activity, thereby reducing mitochondrial ROS and leads to a protective effect on Ang II-induced cardiac hypertrophy.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA