Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Opt Lett ; 49(11): 3046-3049, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38824324

RESUMO

Solid-state indirect time-of-flight (iToF) cameras are crucial to numerous short-to-medium-range applications, owing to their advantages in terms of system integrability and long-term reliability. However, due to the low light intensity, the sensing range of iToF cameras is generally limited to a few meters, which hinders their wide applications. Further increasing the sensing range requires not only higher-power laser diodes but also well-designed driver circuits, which are based on prior knowledge of the laser diodes' equivalent circuits (ECs). However, experimental studies on ECs of a mounted, high-power vertical-cavity surface-emitting laser (VCSEL) array that comprehensively incorporates all parasitic components, especially parasitic stemming from printed circuit boards (PCBs), remain absent. In this Letter, an 850 nm VCSEL array with a 15.3 W peak power and a 581 MHz bandwidth is fabricated, and more importantly, its EC is experimentally established. Leveraging the accurate EC, a compact iToF camera with a sensing range up to 11.50 m is designed. In addition, a modified precision model is proposed to better evaluate the iToF camera's performance.

2.
Opt Lett ; 49(2): 306-309, 2024 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-38194554

RESUMO

A novel, to the best of our knowledge, structure for spectral beam combining (SBC) is proposed, utilizing a polarization-separated feedback (PSF). A polarization separation element is introduced to separate the laser beam into a TE-polarized light and a TM-polarized light. The lower-power light is selected as the external feedback to adjust the resonant wavelength, while the other light is combined spectrally. Compared to the conventional SBC source with a similar feedback, the power and efficiency of the PSFSBC are improved by approximately 20%. Additionally, the beam quality in the non-SBC direction is optimized by 10%, and the power on the output coupler is reduced to nearly one-third. This provides an effective method for achieving an optimized SBC performance.

3.
Nucleic Acids Res ; 50(13): 7380-7395, 2022 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-35766439

RESUMO

Although previous studies have identified several autonomous pathway components that are required for the promotion of flowering, little is known about how these components cooperate. Here, we identified an autonomous pathway complex (AuPC) containing both known components (FLD, LD and SDG26) and previously unknown components (EFL2, EFL4 and APRF1). Loss-of-function mutations of all of these components result in increased FLC expression and delayed flowering. The delayed-flowering phenotype is independent of photoperiod and can be overcome by vernalization, confirming that the complex specifically functions in the autonomous pathway. Chromatin immunoprecipitation combined with sequencing indicated that, in the AuPC mutants, the histone modifications (H3Ac, H3K4me3 and H3K36me3) associated with transcriptional activation are increased, and the histone modification (H3K27me3) associated with transcriptional repression is reduced, suggesting that the AuPC suppresses FLC expression at least partially by regulating these histone modifications. Moreover, we found that the AuPC component SDG26 associates with FLC chromatin via a previously uncharacterized DNA-binding domain and regulates FLC expression and flowering time independently of its histone methyltransferase activity. Together, these results provide a framework for understanding the molecular mechanism by which the autonomous pathway regulates flowering time.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Flores/genética , Flores/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Domínio MADS/genética , Proteínas de Domínio MADS/metabolismo , Mutação
4.
Sensors (Basel) ; 24(5)2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38475153

RESUMO

LiDAR has high accuracy and resolution and is widely used in various fields. In particular, phase-modulated continuous-wave (PhMCW) LiDAR has merits such as low power, high precision, and no need for laser frequency modulation. However, with decreasing signal-to-noise ratio (SNR), the noise on the signal waveform becomes so severe that the current methods to extract the time-of-flight are no longer feasible. In this paper, a novel method that uses deep neural networks to measure the pulse width is proposed. The effects of distance resolution and SNR on the performance are explored. Recognition accuracy reaches 81.4% at a 0.1 m distance resolution and the SNR is as low as 2. We simulate a scene that contains a vehicle, a tree, a house, and a background located up to 6 m away. The reconstructed point cloud has good fidelity, the object contours are clear, and the features are restored. More precisely, the three distances are 4.73 cm, 6.00 cm, and 7.19 cm, respectively, showing that the performance of the proposed method is excellent. To the best of our knowledge, this is the first work that employs a neural network to directly process LiDAR signals and to extract their time-of-flight.

5.
Sensors (Basel) ; 24(11)2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38894446

RESUMO

Narrow-linewidth lasers mainly depend on the development of advanced laser linewidth measurement methods for related technological progress as key devices in satellite laser communications, precision measurements, ultra-high-speed optical communications, and other fields. This manuscript provides a theoretical analysis of linewidth characterization methods based on the beat frequency power spectrum and laser phase noise calculations, and elaborates on existing research of measurement technologies. In addition, to address the technical challenges of complex measurement systems that commonly rely on long optical fibers and significant phase noise jitter in the existing research, a short-delay self-heterodyne method based on coherent envelope spectrum demodulation was discussed in depth to reduce the phase jitter caused by 1/f noise. We assessed the performance parameters and testing conditions of different lasers, as well as the corresponding linewidth characterization methods, and analyzed the measurement accuracy and error sources of various methods.

6.
Sensors (Basel) ; 24(12)2024 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-38931696

RESUMO

Blue lasers are integral to a variety of applications, including marine communication, underwater resource exploration, cold laser processing, laser medicine, and beyond. Vertical external cavity surface-emitting lasers (VECSELs) have the advantages of high output power and tunable wavelength, and can output blue laser via frequency doubling. In this article, a new type of intracavity beam control external-cavity structure is introduced. The laser beam waist is effectively adjusted by intracavity beam control, and the frequency conversion efficiency is improved. A laser cavity stability analysis model was developed to investigate the impact of laser cavity lens parameters and relative positions on stability. The external resonant cavity of VECSELs utilizes two optical lenses to position the beam waist near the laser output coupling mirror and locates the frequency doubling crystal at a high optical power density position to optimize frequency conversion efficiency. The VECSEL straight external-cavity structure achieves a frequency conversion efficiency of up to 60.2% at 488 nm, yielding a blue laser output exceeding 1.3 W. The full width at half maximum of the 488 nm spectrum measures approximately 0.23 nm. This intracavity beam-controlled direct external-cavity structure effectively mitigates laser mode leakage and shows potential for the development of an efficient and compact blue laser source.

7.
Sensors (Basel) ; 24(14)2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39066097

RESUMO

In this study, a novel metal-dielectric film mode filter structure that can flexibly regulate the transverse mode inside vertical-cavity surface-emitting lasers (VCSELs) is proposed. The number, volume, and stability of transverse modes inside the VCSEL can be adjusted according to three key parameters-the oxide aperture, the metal aperture, and the distance between the oxide aperture and the metal aperture-to form a flexible window, and a new parameter is defined to describe the mode identification. This study provides a complete simulation theory basis and calculation method, which is of great significance for the optical mode control in VCSELs.

8.
Opt Lett ; 48(12): 3139-3142, 2023 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-37319046

RESUMO

In this Letter, we present a novel, to the best of our knowledge, image-based approach to analyze the mode control ability of a photonic lantern employed in diode laser beam combining, aiming to achieve a stable beam output. The proposed method is founded on theories of power flow and mode coupling and is validated through experiments. The findings demonstrate that the analysis of the beam combining process is highly reliable when the main mode component of the output light is the fundamental mode. Moreover, it is experimentally demonstrated that the mode control performance of the photonic lantern significantly influences the beam combining loss and the fundamental mode purity. In the essence of the variation-based analysis, a key advantage of the proposed method is its applicability even in the situation of a poor combined beam stability. The experiment only requires the collection of the far-field light images of the photonic lantern to characterize the model control ability, achieving an accuracy greater than 98%.


Assuntos
Lasers Semicondutores , Fótons
9.
Sensors (Basel) ; 23(11)2023 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-37299747

RESUMO

The horizontal cavity surface emitting laser (HCSEL) boasts excellent properties, including high power, high beam quality, and ease of packaging and integration. It fundamentally resolves the problem of the large divergence angle in traditional edge-emitting semiconductor lasers, making it a feasible scheme for realizing high-power, small-divergence-angle, and high-beam-quality semiconductor lasers. Here, we introduce the technical scheme and review the development status of HCSELs. Firstly, we thoroughly analyze the structure, working principles, and performance characteristics of HCSELs according to different structures, such as the structural characteristics and key technologies. Additionally, we describe their optical properties. Finally, we analyze and discuss potential development prospects and challenges for HCSELs.


Assuntos
Lasers Semicondutores , Luz , Desenho de Equipamento , Propriedades de Superfície
10.
Opt Express ; 30(6): 8991-8999, 2022 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-35299338

RESUMO

Transverse optical confinement in oxide-confined vertical-cavity surface-emitting lasers (VCSELs) crucially depends on thickness of oxide layer and its position relative to a standing wave. Modifying the structure reduces the overlap between the oxide layer and the standing wave as well as effective refractive index difference between core and cladding of the VCSEL that subsequently decreases of the number of transverse modes and increases the mode extension beyond oxide aperture. A 795 nm VCSEL is designed and fabricated with this concept. The proposed device achieves high single-mode operation of 4.1 mW at 80 °C, SMSR of 41.68 dB, and OPSR of 27.4 dB. VCSEL is applied in a nuclear magnetic resonance gyroscope (NMRG) system as pump source due to its excellent device performance and satisfactory test results are obtained.

11.
Opt Express ; 30(13): 22364-22375, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-36224935

RESUMO

We characterize laser generation in an ultralong air cavity (several meters in length) using an optical-pumped semiconductor gain chip for laser wireless charging applications. The study realizes laser generation in an external air cavity with a length of 200 cm, for the first time, and achieves a maximum output laser power of more than 86.3 mW. Furthermore, the laser oscillation can be maintained even when the output mirror of laser is off-axis within 1.6 cm. Thus, a long external cavity laser would ease the alignment between the laser beam and charging terminal, making it suitable for laser wireless charging applications.

12.
Appl Opt ; 61(9): 2417-2423, 2022 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-35333261

RESUMO

In this paper, the wavelength current tuning characteristics of high-temperature-operation single-mode vertical-cavity surface-emitting lasers (VCSELs) for chip-scale atomic sensing systems are studied. Excellent wavelength current tuning robustness is helpful to improve the stability of atomic sensing systems. By optimizing the size of the oxide aperture combined with surface relief mode control technology, the single-mode VCSEL with an 8 µm oxide aperture can achieve 2.02 mW output power at 355 K, and the wavelength current tuning coefficient is ∼0.25nm/mA. This excellent wavelength current tuning robustness results from the low active current density and device heat generation due to the optimized oxide aperture size.

13.
Sensors (Basel) ; 22(23)2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36501941

RESUMO

We demonstrate a narrow-linewidth, high side-mode suppression ratio (SMSR) semiconductor laser based on the external optical feedback injection locking technology of a femtosecond-apodized (Fs-apodized) fiber Bragg grating (FBG). A single frequency output is achieved by coupling and integrating a wide-gain quantum dot (QD) gain chip with a Fs-apodized FBG in a 1-µm band. We propose this low-cost and high-integration scheme for the preparation of a series of single-frequency seed sources in this wavelength range by characterizing the performance of 1030 nm and 1080 nm lasers. The lasers have a maximum SMSR of 66.3 dB and maximum output power of 134.6 mW. Additionally, the lasers have minimum Lorentzian linewidths that are measured to be 260.5 kHz; however, a minimum integral linewidth less than 180.4 kHz is observed by testing and analyzing the power spectra of the frequency noise values of the lasers.

14.
Opt Express ; 29(21): 33109-33120, 2021 Oct 11.
Artigo em Inglês | MEDLINE | ID: mdl-34809129

RESUMO

We demonstrate a high linear polarization, narrow linewidth hybrid laser composed of a semiconductor gain chip and a high birefringence waveguide Bragg grating (WBG). The laser operates in the C-band, and a maximum output power of 8.07 mW is obtained in the fiber waveguide. With careful temperature tuning, the hybrid laser can operate in a single longitudinal mode state from above the threshold current to 410 mA. The side mode suppression ratio (SMSR) reaches a value of 50.2 dB, and the polarization extinction ratio exceeds 39.6 dB. We numerically analyze the linewidth suppression for the Bragg grating based on adiabatic chirp theory. The hybrid laser shows a narrow linewidth of 4.15 kHz and a low relative intensity noise (RIN) of <-155 dBc/Hz, providing a high-performance light source for coherent light communication.

15.
Appl Opt ; 60(21): 6076-6079, 2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34613271

RESUMO

In this paper, the influence of the epitaxial structure on distributed Bragg reflector (DBR) grating characteristics is studied by simulation analysis. Comparative analysis shows that the symmetrical epitaxial structure can achieve a lower threshold current and, thus, a higher power. Based on the simulated structure, a DBR laser based on a symmetric epitaxial structure was fabricated, and a single longitudinal mode laser output at ∼1060nm was obtained. The maximum power was 104.5 mW, and the side mode suppression ratio (SMSR) is 43 dB.

16.
Ecotoxicol Environ Saf ; 208: 111507, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33120270

RESUMO

Subalpine wetland is a mercury (Hg) sensitive ecosystem, but there is poor understanding of Hg behavior in this typical wetland. Here, distribution and speciation of Hg in waters of a subalpine wetland (Dajiuhu) in China were investigated, and an initial model of the Hg geochemical cycle in the wetland was established based on Hg mass balance calculations. Concentrations of both total Hg (THg, 9.52 ± 6.61 ng L-1) and total methyl mercury (TMeHg, 0.34 ± 0.44 ng L-1) in the waters during the wet season were higher than in the dry season. The majority of THg was in dissolved form whereas most TMeHg was in particle form. The geochemical models suggested that, due to the wet deposition and surface runoff, the input of THg and TMeHg into the wetland in the wet season (222 and 2.74 g year-1, respectively) was higher than that in the dry season (57.9 and 1.15 g year-1, respectively). The output of THg and TMeHg from the wetland underground runoff in the wet season was estimated to be 154 and 2.51 g year-1, respectively, and in the dry season was 15.9 and 0.43 g year-1, respectively. Other losses of Hg were due to volatilization of Hg0 from the sediment water (30.5 and 12.5 g year-1 in the wet and dry seasons, respectively). The flux of the settling of particulate Hg in the wet season was higher than that in the dry season. The fluxes of Hg diffusion from the porewater were relatively low in comparison to the fluxes of inflows and wet deposition. The flux of oxidation was higher than reduction, while the flux of methylation was higher than demethylation. These results indicated that the elevated levels of THg and MeHg in the Dajiuhu wetland are a consequence of rainfall and surface runoff inputs.


Assuntos
Monitoramento Ambiental , Mercúrio/análise , Poluentes Químicos da Água/análise , Áreas Alagadas , China , Ecossistema , Compostos de Metilmercúrio , Estações do Ano
17.
Plant J ; 98(3): 448-464, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30828924

RESUMO

Chromatin modifications are known to affect flowering time in plants, but little is known about how these modifications regulate flowering time in response to environmental signals like photoperiod. In Arabidopsis thaliana, HDC1, a conserved subunit of the RPD3-like histone deacetylase (HDAC) complex, was previously reported to regulate flowering time via the same mechanism as does the HDAC HDA6. Here, we demonstrate that HDC1, SNLs and MSI1 are shared subunits of the HDA6 and HDA19 HDAC complexes. While the late-flowering phenotype of the hda6 mutant is independent of photoperiod, the hda19, hdc1 and snl2/3/4 mutants flower later than or at a similar time to the wild-type in long-day conditions but flower earlier than the wild-type in short-day conditions. Our genome-wide analyses indicate that the effect of hdc1 on histone acetylation and transcription is comparable with that of hda19 but is different from that of hda6. Especially, we demonstrate that the HDA19 complex directly regulates the expression of two flowering repressor genes related to the gibberellin signaling pathway. Thus, the study reveals a photoperiod-dependent role of the HDA19 HDAC complex in the regulation of flowering time.


Assuntos
Arabidopsis/genética , Flores/metabolismo , Estudo de Associação Genômica Ampla/métodos , Histona Desacetilases/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Flores/genética , Regulação da Expressão Gênica de Plantas/genética , Histona Desacetilases/genética , Fotoperíodo
18.
Opt Express ; 28(22): 32612-32619, 2020 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-33114943

RESUMO

In this paper we reported on the optically pumped VECSELs with switchable lasing wavelengths. The two lasing wavelengths of λ ≈ 954 nm and 1003 nm are generated at different pumping powers from the same gain chip. The thermal rollover of output power is observed twice, and the first rollover on the power curve indicates the switch of lasing wavelength. During the operation of our VECSEL, the increase of pumping power changes the temperature within the gain chip, and thus the gain spectrum is tuned to the one of two modes, which is defined by the dips on the reflectivity spectrum. The maximum output power of each wavelength exceeds 2.2 W at -5 °C. The dual-wavelength emission at λ ≈954 nm and 1003 nm is also demonstrated, and the output power of the dual-wavelength emission reached nearly 2 W.

19.
Appl Opt ; 59(28): 8789-8792, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33104562

RESUMO

In this paper, a high-order distributed Bragg reflector (DBR) semiconductor laser operating at 1064 nm is demonstrated based on simulation analysis. To get optimal Bragg grating characteristics, four parameters of the Bragg grating were analyzed in detail. Forty-nine-order Bragg gratings were designed with a reflectivity of 6% and a FWHM of 3 nm, which can realize mode selection while lasing. The Bragg gratings were designed to maximize the use of light. Transmission of the rear laser facet is theoretically 0. This simulation result provides a simple and efficient DBR semiconductor laser scheme without cavity surface coating.

20.
Appl Opt ; 59(29): 9284, 2020 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-33104644

RESUMO

This publisher's note amends the author listing in Appl. Opt.59, 8789 (2020)APOPAI0003-693510.1364/AO.402699.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA