Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
J Neurosci Res ; 101(6): 976-989, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36747471

RESUMO

While numerous studies have suggested the involvement of cerebrovascular dysfunction in the pathobiology of blast-induced traumatic brain injury (bTBI), its exact mechanisms and how they affect the outcome of bTBI are not fully understood. Our previous study showed the occurrence of cortical spreading depolarization (CSD) and subsequent long-lasting oligemia/hypoxemia in the rat brain exposed to a laser-induced shock wave (LISW). We hypothesized that this hemodynamic abnormality is associated with shock wave-induced generation of nitric oxide (NO). In this study, to verify this hypothesis, we used an NO-sensitive fluorescence probe, diaminofluorescein-2 diacetate (DAF-2 DA), for real-time in vivo imaging of male Sprague-Dawley rats' brain exposed to a mild-impulse LISW. We observed the most intense fluorescence, indicative of NO production, along the pial arteriolar walls during the period of 10-30 min post-exposure, parallel with CSD occurrence. This post-exposure period also coincided with the early phase of hemodynamic abnormalities. While the changes in arteriolar wall fluorescence measured in rats receiving pharmacological NO synthase inhibition by nitro-L-arginine methyl ester (L-NAME) 24 h before exposure showed a temporal profile similar to that of changes observed in LISW-exposed rats with CSD, their intensity level was considerably lower; this suggests partial involvement of NOS in shock wave-induced NO production. To the best of our knowledge, this is the first real-time in vivo imaging of NO in rat brain, confirming the involvement of NO in shock-wave-induced hemodynamic impairments. Finally, we have outlined the limitations of this study and our future research directions.


Assuntos
Depressão Alastrante da Atividade Elétrica Cortical , Óxido Nítrico , Ratos , Masculino , Animais , Óxido Nítrico/farmacologia , Ratos Sprague-Dawley , Depressão Alastrante da Atividade Elétrica Cortical/fisiologia , Encéfalo , Óxido Nítrico Sintase , Inibidores Enzimáticos/farmacologia
2.
Wound Repair Regen ; 31(1): 69-76, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36177703

RESUMO

Accurate burn depth assessment is crucial to determine treatment plans for burn patients. We have previously proposed a method for performing burn depth assessments based on photoacoustic (PA) imaging, and we have demonstrated the validity of this method, which allows the successful detection of PA signals originating from the blood under the bloodless burned tissue, using rat burn models. Based on these findings, we started a clinical study in which we faced two technical issues: (1) When the burn depth was shallow, PA signals due to skin contamination and/or melanin in the epidermis (surface signals) could not be distinguished from PA signals originating from the blood in the dermis; (2) the size of the system was too large. To solve these issues, we propose a burn depth diagnosis based on dual-wavelength light emitting diodes (LEDs)-excited PA imaging. The use of LEDs rendered the system compact compared to the previous one that used a conventional solid-state laser. We replicated human burned skin by applying a titrated synthetic melanin solution onto the wound surface in albino rat burn models and measured their burn depths by PA excitation at 690 and 850 nm, where melanin and haemoglobin show greatly different absorption coefficients. As a result, the surface signals were eliminated by subtracting the PA signals at 690 nm from those at 850 nm. The resultant estimated burn depths were strongly correlated with the histological assessment results. The validity of the proposed method was also examined using a burn model of rats with real melanin.


Assuntos
Queimaduras , Técnicas Fotoacústicas , Ratos , Humanos , Animais , Cicatrização , Técnicas Fotoacústicas/métodos , Melaninas , Pele/diagnóstico por imagem , Pele/patologia , Queimaduras/patologia
3.
Opt Express ; 29(23): 38691-38719, 2021 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-34808917

RESUMO

Highly accurate spectrometry requires spectral noise reduction. In this paper, we propose a phase unsynchronized wave synthesizing (PuwS) method that provides different optical path lengths for different wave elements obtained from the division of a wavefront and synthesizes the respective wave elements to have the same propagation direction. PuwS achieves spectral noise reduction and contributes to temporal coherence control. To confirm these properties observed in experimental data, we propose a series of analytical models based on a traditional wave train model. According to the analytical model, PuwS generates an ensemble average effect that prevents spectral noise and decreases the visibility of the spectral fringe pattern. The experimental data show that the spectral noise is reduced when the total number of wave elements increases. PuwS is found to drastically change the measured spectral profile of a silk sample, achieving highly accurate spectrometry. The data also show that a combination of PuwS and an appropriate diffuser decreases the spectral visibility regarding the temporal coherence more effectively than a conventional method using one or more diffusers.

4.
Appl Opt ; 60(21): 6290-6301, 2021 Jul 20.
Artigo em Inglês | MEDLINE | ID: mdl-34613296

RESUMO

To improve frequency resolution, assignments of sub-bins within the bin interval of the conventional discrete Fourier transform are proposed by decreasing the number of sampled data. The simulated and experimental results of the basic sub-bin spectrum characteristics are presented. Using a signal oscillator, digital oscilloscope, and PC, the sub-bin line spectrum between two conventional bins is measured, and nine line spectra of sub-bins corresponding to the simulated results are measured. The linearity of the sub-bin spectrum intensity for amplitudes of 0.001-10 V of the input signal is also measured. The Doppler signals from the optical interferometer using a He-Ne laser are measured using a mixer to tune the frequency. A sub-bin spectrum of 104.89 kHz between two bin frequencies of 104.49 and 105.47 kHz is measured using 256 data points at a sampling frequency of 250 kHz and an acquisition time of 1.024 ms. The precision of displacement for the acquisition time is improved by one order to 32 nm for a full displacement of 2.342 µm. The sub-bins, as a composition of bin structure, are applicable to various fields.

5.
Lasers Surg Med ; 53(9): 1238-1246, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-33655570

RESUMO

BACKGROUND AND OBJECTIVES: Control of burn wound infection is difficult due to the increase in drug-resistant bacteria and deteriorated immune responses. In this study, we examined the usefulness of methylene blue (MB)-mediated antimicrobial photodynamic therapy (aPDT) with illumination by a light-emitting diode (LED) array for controlling invasive infections from the wound to inside the body for rats with an extended deep burn infected with Pseudomonas aeruginosa. STUDY DESIGN/MATERIALS AND METHODS: An MB solution with the addition of ethanol, ethylene-diamine-tetra-acetic acid disodium salt, and dimethyl sulfoxide was used as a photosensitizer (PS). An extended deep burn was made on the dorsal skin in rats and the wounds were infected with P. aeruginosa. The rats were divided into three groups: control (no treatment; n = 14), PS mixture application alone (PS alone group; n = 10), and aPDT group (n = 14). For aPDT, after the PS mixture was applied onto the surface of infected wounds, the wounds were illuminated with a 665-nm LED array at an intensity of 45 mW/cm2 three times per treatment, with an illumination duration of 20 minutes and an interval of 10 minutes. The treatment was repeated each day for 7 consecutive days (day 0-day 6). Bacterial numbers on the wound surface and the weights and survival rates of the animals were evaluated daily. At the endpoints, bacterial numbers in the liver and blood were counted. Since the PS mixture showed high dark toxicity against P. aeruginosa in vitro, the influence of the PS mixture application onto healthy skin was also examined in vivo. RESULTS: Even in the aPDT group, rapid bacterial regrowth was observed on the wound surface after each day's treatment, but the geometric mean values of the bacterial numbers before and after each aPDT were considerably lower than those in the control group. Application of the PS mixture alone showed a clear bactericidal effect only at day 0, which is attributable to the formation of biofilms after day 1. Rats in the aPDT group showed a smaller weight loss, a higher ratio of no bacterial migration at the endpoints, and significantly higher survival rates than those in the other two groups. Effects of repeated application of the PS mixture onto healthy skin were not evident. CONCLUSIONS: Application of MB-mediated aPDT with illumination by a high-intensity LED array daily for seven consecutive days was effective for suppressing invasive infection from the wound to inside the body in rats with an extensive deep burn infected with P. aeruginosa, resulting in significant improvement of their survival. Lasers Surg. Med. © 2021 Wiley Periodicals LLC.


Assuntos
Queimaduras , Fotoquimioterapia , Infecção dos Ferimentos , Animais , Queimaduras/complicações , Queimaduras/tratamento farmacológico , Iluminação , Azul de Metileno/farmacologia , Azul de Metileno/uso terapêutico , Fármacos Fotossensibilizantes/uso terapêutico , Ratos , Infecção dos Ferimentos/tratamento farmacológico
6.
Int J Mol Sci ; 22(4)2021 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-33546389

RESUMO

Cyanosis is a pathological condition that is characterized by a bluish discoloration of the skin or mucous membranes. It may result from a number of medical conditions, including disorders of the respiratory system and central nervous system, cardiovascular diseases, peripheral vascular diseases, deep vein thrombosis, and regional ischemia. Cyanosis can also be elicited from methemoglobin. Therefore, a simple, rapid, and simultaneous monitoring of changes in oxygenated hemoglobin and deoxygenated hemoglobin is useful for protective strategies against organ ischemic injury. We previously developed a red-green-blue camera-based spectral imaging method for the measurements of melanin concentration, oxygenated hemoglobin concentration (CHbO), deoxygenated hemoglobin concentration (CHbR), total hemoglobin concentration (CHbT) and tissue oxygen saturation (StO2) in skin tissues. We leveraged this approach in this study and extended it to the simultaneous quantifications of methemoglobin concentration (CmetHb), CHbO, CHbR, and StO2. The aim of the study was to confirm the feasibility of the method to monitor CmetHb, CHbO, CHbR, CHbT, and StO2. We performed in vivo experiments using rat dorsal skin during methemoglobinemia induced by the administration of sodium nitrite (NaNO2) and changing the fraction of inspired oxygen (FiO2), including normoxia, hypoxia, and anoxia. Spectral diffuse reflectance images were estimated from an RGB image by the Wiener estimation method. Multiple regression analysis based on Monte Carlo simulations of light transport was used to estimate CHbO, CHbR, CmetHb, CHbT, and StO2. CmetHb rapidly increased with a half-maximum time of less than 30 min and reached maximal values nearly 60 min after the administration of NaNO2, whereas StO2 dramatically dropped after the administration of NaNO2, indicating the temporary production of methemoglobin and severe hypoxemia during methemoglobinemia. Time courses of CHbT and StO2, while changing the FiO2, coincided with well-known physiological responses to hyperoxia, normoxia, and hypoxia. The results indicated the potential of this method to evaluate changes in skin hemodynamics due to loss of tissue viability and vitality.


Assuntos
Diagnóstico por Imagem/métodos , Hemoglobinas/análise , Metemoglobina/análise , Oxiemoglobinas/análise , Algoritmos , Animais , Cianose/sangue , Cianose/diagnóstico , Análise de Dados , Diagnóstico por Imagem/instrumentação , Diagnóstico por Imagem/normas , Masculino , Método de Monte Carlo , Oxigênio , Ratos , Análise de Regressão , Análise Espectral/métodos
7.
Appl Opt ; 59(33): 10512-10522, 2020 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-33361986

RESUMO

We demonstrate phase imaging that reduces the common phase noise in full-field optical coherence microscopy using a short multimode fiber (SMMF) probe. Using a cover glass, phase images of the SMMF and sample surfaces were measured simultaneously. Subtracting the phase of the SMMF surface as a reference, the phase drifts in the sample region are reduced. The axial and lateral resolutions were 2.3 µm and <4.4µm, respectively. The standard deviation of the time variation in the phase decreased from 14.3 deg to 9.2 deg and was reduced by 64% when in contact with the polymer film at the SMMF. In quantitative evaluations, the measured phases closely correspond to the phases changed by a piezoelectric device.

8.
J Neurosci Res ; 96(5): 875-888, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29150867

RESUMO

In ischemic stroke research, a better understanding of the pathophysiology and development of neuroprotection methods are crucial, for which in vivo imaging to monitor spreading depolarizations (SDs) and evolution of tissue damage is desired. Since these events are accompanied by cellular morphological changes, light-scattering signals, which are sensitive to cellular and subcellular morphology, can be used for monitoring them. In this study, we performed transcranial imaging of near-infrared (NIR) diffuse reflectance at ∼800 nm, which sensitively reflects light-scattering change, and examined how NIR reflectance is correlated with simultaneously measured cerebral blood flow (CBF) for a rat middle cerebral artery occlusion (MCAO) model. After MCAO, wavelike NIR reflectance changes indicating occurrence of SDs were generated and propagated around the ischemic core for ∼90 min, during which time NIR reflectance increased not only within the ischemic core but also in the peripheral region. The area with increased reflectance expanded with increase in the number of SD occurrences, the correlation coefficient being 0.7686 (n = 5). The area with increased reflectance had become infarcted at 24 hr after MCAO. The infarct region was found to be associated with hypoperfusion or no-flow response to SD, but hyperemia or hypoperfusion followed by hyperemia response to SD was also observed, and the regional heterogeneity seemed to be connected with the rat cerebrovasculature and hence existence/absence of collateral flow. The results suggest that NIR reflectance signals depicted early evolution of tissue damage, which was not seen by CBF changes, and enabled lesion progression monitoring in the present stroke model.


Assuntos
Isquemia Encefálica/diagnóstico por imagem , Córtex Cerebral/diagnóstico por imagem , Depressão Alastrante da Atividade Elétrica Cortical/fisiologia , Acidente Vascular Cerebral/diagnóstico por imagem , Animais , Isquemia Encefálica/patologia , Córtex Cerebral/patologia , Circulação Cerebrovascular/fisiologia , Modelos Animais de Doenças , Progressão da Doença , Infarto da Artéria Cerebral Média/complicações , Masculino , Ratos , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Acidente Vascular Cerebral/patologia
9.
Appl Opt ; 57(35): 10083-10091, 2018 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-30645212

RESUMO

Optical coherence tomography is one of the standard imaging modalities at present, widely used in the medical and biological fields to obtain three-dimensional (3D) images with high spatial resolution. However, the depth up to which the 3D images can be directly obtained is limited to within 3 mm. Therefore, the suitability of many kinds of catheters and needles has been considered for minimally invasive imaging. We have examined the utility of a short multimode fiber (SMMF) using graded index optical fibers for minimal invasive imaging of deeper areas, up to 6-8 mm. The diameter and length of the SMMF are 125 µm and 6-8 mm, respectively. In the core of the SMMF, scattering and multirefraction occur due to small variations in the refractive index to generate deformations and depolarization of images. In order to investigate the depolarization characteristics, the images reflected at the facet of the SMMF were measured by changing the angle of the polarizer, using an LED as the light source. The reflection image almost corresponds to that obtained with combined linearly polarized modes with the ratio of LP01∶LP11∶LP21 equal to 1∶0.2∶0.7. Comparing the measured results with simulations in the simple model, the depolarization ratio was estimated at 0.7 in the core. The degrees of polarization were measured to be 0.15 around the center and increased to 0.90 at the periphery.

10.
Int J Mol Sci ; 19(2)2018 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-29415505

RESUMO

During surgical treatment for cerebrovascular diseases, cortical hemodynamics are often controlled by bypass graft surgery, temporary occlusion of arteries, and surgical removal of veins. Since the brain is vulnerable to hypoxemia and ischemia, interruption of cerebral blood flow reduces the oxygen supply to tissues and induces irreversible damage to cells and tissues. Monitoring of cerebral hemodynamics and alteration of cellular structure during neurosurgery is thus crucial. Sequential recordings of red-green-blue (RGB) images of in vivo exposed rat brains were made during hyperoxia, normoxia, hypoxia, and anoxia. Monte Carlo simulation of light transport in brain tissue was used to specify relationships among RGB-values and oxygenated hemoglobin concentration (CHbO), deoxygenated hemoglobin concentration (CHbR), total hemoglobin concentration (CHbT), hemoglobin oxygen saturation (StO2), and scattering power b. Temporal courses of CHbO, CHbR, CHbT, and StO2 indicated physiological responses to reduced oxygen delivery to cerebral tissue. A rapid decrease in light scattering power b was observed after respiratory arrest, similar to the negative deflection of the extracellular direct current (DC) potential in so-called anoxic depolarization. These results suggest the potential of this method for evaluating pathophysiological conditions and loss of tissue viability.


Assuntos
Encéfalo/irrigação sanguínea , Encéfalo/metabolismo , Circulação Cerebrovascular , Hemodinâmica , Oxigênio/metabolismo , Animais , Encéfalo/diagnóstico por imagem , Hemoglobinas/química , Hemoglobinas/metabolismo , Hipóxia , Masculino , Método de Monte Carlo , Ratos , Análise Espectral
11.
Appl Opt ; 55(12): 3297-305, 2016 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-27140102

RESUMO

We demonstrated the feasibility of an ultrathin imaging probe with a 50-µm core diameter, a 125 µm total diameter, and an 8.8 mm length, which is a typical graded-index multimode fiber for optical communications. We used an ABCD matrix to analyze the imaging conditions and magnification, which corresponded closely to the measured results. The lateral resolution was calculated at 1.2 µm with a wavelength of 730 nm, which reflects the image test pattern where a period of 4.38 µm was measured with a wavelength of 730 nm. In the numerical aperture of the objective lens, we experimentally evaluated the tradeoff between the magnification and the coupling efficiency. At four wavelengths of 540 nm, 632 nm, 730 nm, and 852 nm, the contrast and signal intensity versus the wavelength were investigated to show that the contrast at 632 and 730 nm is relatively high. By using a thin random phase screen model, we explained that as the wavelength decreases the greater the decrease in the optical transfer function at higher spatial frequencies. Using a 635 nm LED light source, we imaged the surfaces of chicken tendons in contact and the surface roughness was visible.

12.
Sensors (Basel) ; 16(12)2016 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-27897981

RESUMO

We propose the visualization of venous compliance (VC) using a digital red-green-blue (RGB) camera. The new imaging method, which transforms RGB values into VC, combines VC evaluation with blood concentration estimation from the RGB values of each pixel. We evaluate a non-contact plethysmography (NCPG) system for VC based on comparisons with conventional strain gauge plethysmography (SPG). We conduct in vivo measurements using both systems and investigate their differences by evaluating the VC. The results show that the two methods measure different blood vessels and that errors caused by interstitial fluid accumulation are negligible for the NCPG system, whereas SPG is influenced by such errors. Additionally, we investigate the relationship between VC and physical activity using NCPG.


Assuntos
Pletismografia/métodos , Tromboembolia Venosa/fisiopatologia , Vasos Sanguíneos/fisiologia , Humanos , Veias/fisiologia
13.
Burns ; 50(1): 167-177, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37821274

RESUMO

INTRODUCTION: To demonstrate the feasibility of our previously proposed Diffuse reflectance spectral imaging (DRSI) method for in vivo monitoring of oxygenated hemoglobin, deoxygenated hemoglobin, methemoglobin, tissue oxygen saturation, and methemoglobin saturation in a rat scald burn wound model and assess whether the method could be used for differentiating the burn depth groups in rats based on the hemoglobin parameters. METHODOLOGY: Superficial dermal burns (SDBs), deep dermal burns (DDBs), and deep burns (DBs) were induced in rat dorsal skin using a Walker-Mason method. An approach based on multiple regression analysis for spectral diffuse reflectance images aided by Monte Carlo simulations for light transport was used to quantify the hemoglobin parameters. Canonical discriminant analysis (CDA) was performed to discriminate SDB, DDB, and DB. RESULTS: CDA using the total hemoglobin concentration, tissue oxygen saturation, and methemoglobin saturation as the independent variables showed good performance for discriminating the SDB, DDB, and DB groups immediately after burn injury and the SDB group from the DDB and DB groups 24-72 h after burn injury. CONCLUSIONS: The DRSI method with multiple regression analysis for quantification of oxygenated hemoglobin, deoxygenated hemoglobin, and methemoglobin proved to be reliable for monitoring these hemoglobin derivatives in the rat experimental burn injury model. The parameters of tissue oxygen saturation, methemoglobin saturation, and total hemoglobin concentration are promising for the differentiating the degree of burn injury using CDA.


Assuntos
Queimaduras , Metemoglobina , Ratos , Animais , Oxigênio , Queimaduras/diagnóstico por imagem , Hemoglobinas/análise
14.
J Biomed Opt ; 29(2): 026003, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38361505

RESUMO

Significance: Burn injuries represent a global public health problem that kills an estimated 180,000 people annually. Non-fatal burns result in prolonged hospitalization, disfigurement, and disability. The most common, convenient, and widely used method for assessing burn depth is physical or visual examination, but the accuracy of this method is reportedly poor (60% to 75%). Rapid, correct assessment of burn depth is very important for the optimal management and treatment of burn patients. New methods of burn depth assessment that are inexpensive, simple, rapid, non-contact, and non-invasive are therefore needed. Aim: The aim of this study was to propose an approach to visualize the spatial distribution of burn depth using hemoglobin parameters estimated from spectral diffuse reflectance imaging and to demonstrate the feasibility of the proposed approach for differentiating burn depth in a rat model of scald burn injury. Approach: The new approach to creating a spatial map of burn depth was based on canonical discriminant analysis (CDA) of total hemoglobin concentration, tissue oxygen saturation, and methemoglobin saturation as estimated from spectral diffuse reflectance images. Burns of three different degrees of severity were created in rat dorsal skin by 10-s exposure to water maintained at 70°C, 78°C, and 98°C, respectively. Spectral images for dorsal regions were acquired under anesthesia immediately after burn injury and at 24 h, 48 h, and 72 h after injury. Results: Most areas of images in the group with skin exposed to 70°C water and 98°C water were classified as 70°C burn and 98°C burn, respectively. In contrast, no significant difference between areas classified as 78°C burn and 98°C burn from 24 h to 72 h was evident in the group with skin exposed to 78°C water, suggesting that burn depth was heterogeneous. Conclusions: The proposed approach combining diffuse reflectance spectral imaging and CDA appears promising for differentiating 70°C burns from 78°C burns and 98°C burns, and 98°C burns from 70°C burns and 78°C burns at 24 to 72 h after burn injury in a rat model of scald burn injury.


Assuntos
Queimaduras , Pele , Humanos , Ratos , Animais , Pele/química , Hemoglobinas/análise , Diagnóstico por Imagem , Água , Queimaduras/diagnóstico por imagem
15.
J Neurotrauma ; 2024 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-38534205

RESUMO

In the past decade, signature clinical neuropathology of blast-induced traumatic brain injury has been under intense debate, but interface astroglial scarring (IAS) seems to be convincing. In this study, we examined whether IAS could be replicated in the rat brain exposed to a laser-induced shock wave(s) (LISW[s]), a tool that can produce a pure shock wave (primary mechanism) without dynamic pressure (tertiary mechanism). Under certain conditions, we observed astroglial scarring in the subpial glial plate (SGP), gray-white matter junctions (GM-WM), ventricular wall (VW), and regions surrounding cortical blood vessels, accurately reproducing clinical IAS. We also observed shock wave impulse-dependent meningeal damage (dural microhemorrhage) in vivo by transcranial near-infrared (NIR) reflectance imaging. Importantly, there were significant correlations between the degree of dural microhemorrhage and the extent of astroglial scarring more than 7 days post-exposure, suggesting an association of meningeal damage with astroglial scarring. The results demonstrated that the primary mechanism alone caused the IAS and meningeal damage, both of which are attributable to acoustic impedance mismatching at multi-layered tissue boundaries. The time course of glial fibrillary acidic protein (GFAP) immunoreactivity depended not only on the LISW conditions but also on the regions. In the SGP, significant increases in GFAP immunoreactivity were observed at 3 days post-exposure, whereas in the GM-WM and VW, GFAP immunoreactivity was not significantly increased before 28 days post-exposure, suggesting different pathological mechanisms. With the high-impulse single exposure or the multiple exposure (low impulse), fibrotic reaction or fibrotic scar formation was observed, in addition to astroglial scarring, in the cortical surface region. Although there are some limitations, this seems to be the first report on the shock-wave-induced IAS rodent model. The model may be useful to explore potential therapeutic approaches for IAS.

16.
Sensors (Basel) ; 13(6): 7902-15, 2013 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-23783740

RESUMO

A multi-spectral diffuse reflectance imaging method based on a single snap shot of Red-Green-Blue images acquired with the exposure time of 65 ms (15 fps) was investigated for estimating melanin concentration, blood concentration, and oxygen saturation in human skin tissue. The technique utilizes the Wiener estimation method to deduce spectral reflectance images instantaneously from an RGB image. Using the resultant absorbance spectrum as a response variable and the extinction coefficients of melanin, oxygenated hemoglobin and deoxygenated hemoglobin as predictor variables, multiple regression analysis provides regression coefficients. Concentrations of melanin and total blood are then determined from the regression coefficients using conversion vectors that are numerically deduced in advance by the Monte Carlo simulations for light transport in skin. Oxygen saturation is obtained directly from the regression coefficients. Experiments with a tissue-like agar gel phantom validated the method. In vivo experiments on fingers during upper limb occlusion demonstrated the ability of the method to evaluate physiological reactions of human skin.


Assuntos
Hemoglobinas/análise , Melaninas/análise , Espectrofotometria , Humanos , Melaninas/sangue , Método de Monte Carlo , Oxigênio/metabolismo , Análise de Regressão , Pele/metabolismo
17.
J Biomed Opt ; 28(10): 107001, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37915398

RESUMO

Significance: Evaluation of biological chromophore levels is useful for detection of various skin diseases, including cancer, monitoring of health status and tissue metabolism, and assessment of clinical and physiological vascular functions. Clinically, it is useful to assess multiple different chromophores in vivo with a single technique or instrument. Aim: To investigate the possibility of estimating the concentration of four chromophores, bilirubin, oxygenated hemoglobin, deoxygenated hemoglobin, and melanin from diffuse reflectance spectra in the visible region. Approach: A new diffuse reflectance spectroscopic method based on the multiple regression analysis aided by Monte Carlo simulations for light transport was developed to quantify bilirubin, oxygenated hemoglobin, deoxygenated hemoglobin, and melanin. Three different experimental animal models were used to induce hyperbilirubinemia, hypoxemia, and melanogenesis in rats. Results: The estimated bilirubin concentration increased after ligation of the bile duct and reached around 18 mg/dl at 50 h after the onset of ligation, which corresponds to the reference value of bilirubin measured by a commercially available transcutaneous bilirubin meter. The concentration of oxygenated hemoglobin and that of deoxygenated hemoglobin decreased and increased, respectively, as the fraction of inspired oxygen decreased. Consequently, the tissue oxygen saturation dramatically decreased. The time course of melanin concentration after depilation of skin on the back of rats was indicative of the supply of melanosomes produced by melanocytes of hair follicles to the growing hair shaft. Conclusions: The results of our study showed that the proposed method is capable of the in vivo evaluation of percutaneous bilirubin level, skin hemodynamics, and melanogenesis in rats, and that it has potential as a tool for the diagnosis and management of hyperbilirubinemia, hypoxemia, and pigmented skin lesions.


Assuntos
Bilirrubina , Melaninas , Ratos , Animais , Melaninas/análise , Bilirrubina/análise , Bilirrubina/metabolismo , Análise Espectral/métodos , Pele/química , Hipóxia/diagnóstico por imagem , Hemoglobinas/análise , Oxiemoglobinas/análise , Hiperbilirrubinemia/diagnóstico por imagem , Hiperbilirrubinemia/metabolismo
18.
Appl Opt ; 51(10): 1436-45, 2012 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-22505060

RESUMO

In a previous study, we reported measurements of three-dimensional (3D) optical coherence tomography (OCT) images through a thinned skull by reducing temperatures from 28 °C to 18 °C in vivo in the rat brain to show negative correlation coefficients (CCs) between ratios of signal intensity (RSI) and temperature for applications to monitoring brain viability. In this study, using the same OCT system, we measured 3D OCT images of the rat brain by periodically changing tissue temperatures from 20 °C to 32 °C in vivo. In the evaluation of CCs among RSI, temperature, and heart rate, the largest number of periods was four, and the longest measurement time was 570 min. Averaged CCs between RSI and temperature, and between RSI and heart rate, were -0.42 to -0.50 and -0.48 to -0.64, respectively. RSI reversibly changed subsequent variations of temperatures and finally increased rapidly just before cardiac arrest. These results indicate that RSI could correspond to decreases in viability because of local ischemia and recovery.


Assuntos
Temperatura Corporal/fisiologia , Encéfalo/fisiologia , Tomografia de Coerência Óptica/métodos , Animais , Frequência Cardíaca/fisiologia , Imageamento Tridimensional/métodos , Masculino , Ratos , Ratos Wistar
19.
J Biomed Opt ; 27(1)2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-35088588

RESUMO

SIGNIFICANCE: Pseudomonas(P.) aeruginosa, a common cause of infection in burns, acquires antibiotic resistance easily and forms biofilms efficiently. Thus, it is difficult to control P. aeruginosa infection in burn wounds, which causes lethal septicemia. Antimicrobial photodynamic therapy (aPDT) is attractive as a new strategy to treat burn wound infections with drug-resistant bacteria. AIM: We examined the efficacy of methylene blue (MB)-mediated aPDT with various additives in a tissue depth-resolved manner to find conditions that minimize the bacterial invasion. APPROACH: We applied MB-mediated aPDT with LED array illumination to an extensive, full-thickness burn infected with P. aeruginosa in rats for three consecutive days (days 0, 1, and 2). On day 2, the depth distributions of bacteria were assessed based on the histological analysis using Gram staining. We examined how the addition of ethylenediaminetetraacetic acid (EDTA), ethanol, and dimethyl sulfoxide (DMSO) affected the efficacy of aPDT. RESULTS: Pure MB-mediated aPDT significantly reduced the numbers of bacteria with biofilms on the wound surface and in the epidermis compared with those for the control tissue (saline only). However, there were many bacteria in the deeper region of the tissue. In contrast, MB/EDTA/ethanol/DMSO-mediated aPDT minimized the numbers of bacteria in the broad depth region of the tissue. Still, a limited number of bacteria was observed in the subcutaneous tissue. CONCLUSIONS: The depthwise analysis of bacteria demonstrated the efficacy of the MB-mediated aPDT with the addition of EDTA, ethanol, and DMSO in controlling burn wound infections. However, further improvement of the therapy is needed to suppress bacterial migration into the deep tissue completely.


Assuntos
Queimaduras , Fotoquimioterapia , Infecção dos Ferimentos , Animais , Biofilmes , Queimaduras/tratamento farmacológico , Azul de Metileno/farmacologia , Fármacos Fotossensibilizantes/farmacologia , Fármacos Fotossensibilizantes/uso terapêutico , Pseudomonas aeruginosa , Ratos , Infecção dos Ferimentos/tratamento farmacológico
20.
Front Physiol ; 13: 933397, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36200058

RESUMO

We propose a method to perform simultaneous measurements of percutaneous arterial oxygen saturation (SpO 2), tissue oxygen saturation (StO 2), pulse rate (PR), and respiratory rate (RR) in real-time, using a digital red-green-blue (RGB) camera. Concentrations of oxygenated hemoglobin (C HbO), deoxygenated hemoglobin (C HbR), total hemoglobin (C HbT), and StO 2 were estimated from videos of the human face using a method based on a tissue-like light transport model of the skin. The photoplethysmogram (PPG) signals are extracted from the temporal fluctuations in C HbO, C HbR, and C HbT using a finite impulse response (FIR) filter (low and high cut-off frequencies of 0.7 and 3 Hz, respectively). The PR is calculated from the PPG signal for C HbT. The ratio of pulse wave amplitude for C HbO and that for C HbR are associated with the reference value of SpO 2 measured by a commercially available pulse oximeter, which provides an empirical formula to estimate SpO 2 from videos. The respiration-dependent oscillation in C HbT was extracted from another FIR filter (low and high cut-off frequencies of 0.05 and 0.5 Hz, respectively) and used to calculate the RR. In vivo experiments with human volunteers while varying the fraction of inspired oxygen were performed to evaluate the comparability of the proposed method with commercially available devices. The Bland-Altman analysis showed that the mean bias for PR, RR, SpO 2, and StO 2 were -1.4 (bpm), -1.2(rpm), 0.5 (%), and -3.0 (%), respectively. The precisions for PR, RR, Sp O 2, and StO 2 were ±3.1 (bpm), ±3.5 (rpm), ±4.3 (%), and ±4.8 (%), respectively. The resulting precision and RMSE for StO 2 were pretty close to the clinical accuracy requirement. The accuracy of the RR is considered a little less accurate than clinical requirements. This is the first demonstration of a low-cost RGB camera-based method for contactless simultaneous measurements of the heart rate, percutaneous arterial oxygen saturation, and tissue oxygen saturation in real-time.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA