Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 219
Filtrar
1.
Antimicrob Agents Chemother ; 67(7): e0160622, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37314349

RESUMO

The increasing burden and spread of resistant malaria parasites remains an immense burden to public health. These factors have driven the demand to search for a new therapeutic agent. From our screening, phebestin stood out with nanomolar efficacy against Plasmodium falciparum 3D7. Phebestin was initially identified as an aminopeptidase N inhibitor. Phebestin inhibited the in vitro multiplication of the P. falciparum 3D7 (chloroquine-sensitive) and K1 (chloroquine-resistant) strains at IC50 values of 157.90 ± 6.26 nM and 268.17 ± 67.59 nM, respectively. Furthermore, phebestin exhibited no cytotoxic against human foreskin fibroblast cells at 2.5 mM. In the stage-specific assay, phebestin inhibited all parasite stages at 100 and 10-fold its IC50 concentration. Using 72-h in vitro exposure of phebestin at concentrations of 1 µM on P. falciparum 3D7 distorted the parasite morphology, showed dying signs, shrank, and prevented reinvasion of RBCs, even after the compound was washed from the culture. An in silico study found that phebestin binds to P. falciparum M1 alanyl aminopeptidase (PfM1AAP) and M17 leucyl aminopeptidase (PfM17LAP), as observed for bestatin. In vivo evaluation using P. yoelii 17XNL-infected mice with administrations of 20 mg/kg phebestin, once daily for 7 days, resulted in significantly lower parasitemia peaks in the phebestin-treated group (19.53%) than in the untreated group (29.55%). At the same dose and treatment, P. berghei ANKA-infected mice showed reduced parasitemia levels and improved survival compared to untreated mice. These results indicate that phebestin is a promising candidate for development as a potential therapeutic agent against malaria.


Assuntos
Antimaláricos , Malária Falciparum , Malária , Humanos , Animais , Camundongos , Antimaláricos/farmacologia , Antimaláricos/uso terapêutico , Aminopeptidases/uso terapêutico , Parasitemia/tratamento farmacológico , Parasitemia/parasitologia , Cloroquina/farmacologia , Malária/tratamento farmacológico , Malária Falciparum/tratamento farmacológico , Plasmodium falciparum , Plasmodium berghei
2.
Parasitol Res ; 121(1): 413-422, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34750652

RESUMO

The natural polyether ionophore antibiotics may be important chemotherapeutic agents. Among them, kijimicin represents an important type of ionophore compound because it inhibits Eimeria tenella and human immunodeficiency virus. The ionophore monensin displays potent activities against several coccidian parasites including the opportunistic pathogen of humans, Toxoplasma gondii. At first, we evaluated the anti-Toxoplasma activity of kijimicin, monensin as a reference control, and anti-Toxoplasma drugs such as clindamycin, in vitro. The half inhibitory concentrations (IC50) for the anti-Toxoplasma activities of kijimicin, monensin, and clindamycin were 45.6 ± 2.4 nM, 1.3 ± 1.8 nM, and 238.5 ± 1.8 nM, respectively. Morphological analyses by electron microscopy revealed cellular swelling and multiple intracellular vacuole-like structures in the T. gondii tachyzoites after treatment with kijimicin and monensin. Kijimicin and monensin also inhibited the invasion of extracellular parasites (IC50 = 216.6 ± 1.9 pM and 531.1 ± 1.9 pM, respectively). Importantly, kijimicin treatment resulted in decreased mitochondrial membrane potential and generation of reactive oxygen species in T. gondii as monensin did. Furthermore, mice treated with kijimicin at 10 mg/kg/day and 3 mg/kg/day showed 91.7% and 66.7% survival rates, respectively, 30 days after infection with T. gondii. The control mice all died within 18 days of infection. The present study shows that kijimicin inhibits T. gondii growth and changes the ultrastruct of the parasites. This finding may lead to validation of kijimicin as new drug to control T. gondii growth.


Assuntos
Toxoplasma , Toxoplasmose , Animais , Ionóforos , Camundongos , Piranos
3.
Int J Mol Sci ; 23(6)2022 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-35328497

RESUMO

Toxoplasma gondii is a worldwide protozoan parasite that endangers human health and causes enormous economic losses to the animal production sector. A safe and effective vaccine or treatment is needed to reduce these hazards. In this study, we revealed the cyto-nuclear and mitochondrial localization of TgPrx1 and TgPrx3 proteins, respectively. We knocked out the T. gondii peroxiredoxin (TgPrxKO) 1 and 3 genes using a parental type II Prugniaud strain lacking KU80 and HXGPRT genes (PruΔku80Δhxgprt) via CRISPR-Cas9 technology. The successful KO was confirmed using PCR, IFAT, and Western blotting in two clones of both target genes, named TgPrx1KO and TgPrx3KO. Regarding in vitro assays, no significant variations between any of the knocked-out clones in TgPrx1KO or TgPrx3KO parasite strains, or even PruΔku80Δhxgprt, were obtained in rates of infection, proliferation, or egress. Nevertheless, mice that were infected with tachyzoites of the TgPrx3KO strain showed a marked decrease in survival rate compared with TgPrx1KO- and PruΔku80Δhxgprt-infected mice. This effect was confirmed using different mouse strains (ICR and C57BL/6J mice), sexes (male and female), and immunological backgrounds (ICR and SCID mice). In addition, TgPrx1KO and TgPrx3KO induced high levels of interferon gamma (IFN-γ) in infected mice at 8 days post infection, and increased IL-6 and IL-12p40 production from murine macrophages cultivated in vitro. The results of the present study suggested that TgPrx3 can induce anti-T. gondii immune responses that protect the mice from fatal consequences of toxoplasmosis. The results of our current and previous studies represent TgPrx3 as an excellent candidate for sub-unit vaccines, suggesting it may contribute to the control of toxoplasmosis for susceptible humans and animals.


Assuntos
Toxoplasma , Toxoplasmose , Vacinas , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos ICR , Camundongos SCID , Peroxirredoxinas/genética , Proteínas de Protozoários/genética , Toxoplasma/genética , Toxoplasmose/parasitologia
4.
Infect Immun ; 89(2)2021 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-33199353

RESUMO

Toxoplasmosis is a worldwide zoonosis caused by the obligate intracellular parasite Toxoplasma gondii The symptoms of congenital toxoplasmosis range from embryonic death and resorption to subclinical infection, but the mechanism of disease onset remains unclear. C-X-C motif chemokine receptor 3 (CXCR3) is highly expressed in Th1-associated immune cells and plays an important role in the trafficking and activation of immune cells. However, the roles of CXCR3 in T. gondii-induced fetal loss and the molecular mechanism of embryo resorption remain poorly understood. In this study, we investigated the role of CXCR3 in fetal wastage caused by T. gondii infection using CXCR3-deficient (CXCR3-/-) mice. CXCR3-/- and wild-type pregnant mice were inoculated intraperitoneally with T. gondii tachyzoites on day 3.5 of gestation (Gd3.5). Pregnancy rates decreased as the pregnancy progressed in both infected groups; however, infected CXCR3-/- mice showed a significant fetal loss at Gd13.5 compared with that at Gd7.5. All embryos of the infected groups showed necrosis, and embryo resorption was significantly increased in infected CXCR3-/- compared with wild-type mice at Gd13.5. The parasite load of fetoplacental tissues was significantly increased in CXCR3-/- mice at Gd10.5. Moreover, mRNA expression levels of inducible nitric oxide synthase were significantly increased in fetoplacental tissues from infected wild-type mice compared to infected CXCR3-/- mice following the infection. These results suggested that CXCR3-dependent immune responses provide anti-Toxoplasma activity and play an essential role in reducing embryo resorption and fetal loss caused by T. gondii infection during early pregnancy.


Assuntos
Perda do Embrião/patologia , Feto/patologia , Complicações Infecciosas na Gravidez/imunologia , Complicações Infecciosas na Gravidez/patologia , Receptores CXCR3/imunologia , Toxoplasma/imunologia , Toxoplasma/patogenicidade , Toxoplasmose/imunologia , Adulto , Animais , Modelos Animais de Doenças , Feminino , Mortalidade Fetal , Humanos , Masculino , Camundongos , Óxido Nítrico Sintase Tipo II , Gravidez
5.
Int J Mol Sci ; 22(15)2021 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-34360597

RESUMO

Toxoplasma gondii is a protozoan parasite that causes toxoplasmosis and infects almost one-third of the global human population. A lack of effective drugs and vaccines and the emergence of drug resistant parasites highlight the need for the development of new drugs. The mitochondrial electron transport chain (ETC) is an essential pathway for energy metabolism and the survival of T. gondii. In apicomplexan parasites, malate:quinone oxidoreductase (MQO) is a monotopic membrane protein belonging to the ETC and a key member of the tricarboxylic acid cycle, and has recently been suggested to play a role in the fumarate cycle, which is required for the cytosolic purine salvage pathway. In T. gondii, a putative MQO (TgMQO) is expressed in tachyzoite and bradyzoite stages and is considered to be a potential drug target since its orthologue is not conserved in mammalian hosts. As a first step towards the evaluation of TgMQO as a drug target candidate, in this study, we developed a new expression system for TgMQO in FN102(DE3)TAO, a strain deficient in respiratory cytochromes and dependent on an alternative oxidase. This system allowed, for the first time, the expression and purification of a mitochondrial MQO family enzyme, which was used for steady-state kinetics and substrate specificity analyses. Ferulenol, the only known MQO inhibitor, also inhibited TgMQO at IC50 of 0.822 µM, and displayed different inhibition kinetics compared to Plasmodium falciparum MQO. Furthermore, our analysis indicated the presence of a third binding site for ferulenol that is distinct from the ubiquinone and malate sites.


Assuntos
Cumarínicos/metabolismo , Malatos/metabolismo , Proteínas Mitocondriais/metabolismo , Oxirredutases/metabolismo , Proteínas de Protozoários/metabolismo , Toxoplasma/enzimologia , Ubiquinona/metabolismo , Animais , Humanos , Proteínas Mitocondriais/genética , Oxirredutases/genética , Proteínas de Protozoários/genética , Especificidade por Substrato
6.
J Infect Dis ; 221(5): 766-774, 2020 02 18.
Artigo em Inglês | MEDLINE | ID: mdl-31573038

RESUMO

BACKGROUND: Toxoplasmosis, a parasitic disease caused by Toxoplasma gondii, is an important cause of miscarriage or adverse fetal effects, including neurological and ocular manifestations in humans. Current anti-Toxoplasma drugs have limited efficacy against toxoplasmosis and also have severe side effects. Therefore, novel efficacious drugs are urgently needed. Here, we identified metacytofilin (MCF) from a fungal Metarhizium species as a potential anti-Toxoplasma compound. METHODS: Anti-Toxoplasma activities of MCF and its derivatives were evaluated in vitro and in vivo using nonpregnant and pregnant mice. To understand the mode of action of MCF, the RNA expression of host and parasite genes was investigated by RNAseq. RESULTS: In vitro, MCF inhibited the viability of intracellular and extracellular T. gondii. Administering MCF intraperitoneally or orally to mice after infection with T. gondii tachyzoites increased mouse survival compared with the untreated animals. Remarkably, oral administration of MCF to pregnant mice prevented vertical transmission of the parasite. Interestingly, RNA sequencing of T. gondii-infected cells treated with MCF showed that MCF inhibited DNA replication and enhanced RNA degradation in the parasites. CONCLUSIONS: With its potent anti-T. gondii activity, MCF is a strong candidate for future drug development against toxoplasmosis.


Assuntos
Antiparasitários/uso terapêutico , Transmissão Vertical de Doenças Infecciosas/prevenção & controle , Oxazinas/uso terapêutico , Toxoplasma/efeitos dos fármacos , Toxoplasmose/tratamento farmacológico , Toxoplasmose/mortalidade , Administração Intravenosa , Administração Oral , Animais , Antiparasitários/administração & dosagem , Antiparasitários/farmacologia , Replicação do DNA/efeitos dos fármacos , DNA de Protozoário , Modelos Animais de Doenças , Feminino , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Oxazinas/administração & dosagem , Oxazinas/farmacologia , Gravidez , Taxa de Sobrevida , Toxoplasma/genética , Toxoplasmose/parasitologia , Toxoplasmose/transmissão , Resultado do Tratamento
7.
Mol Pharm ; 17(4): 1237-1247, 2020 04 06.
Artigo em Inglês | MEDLINE | ID: mdl-32129629

RESUMO

DNA vaccinations are promising strategies for treating diseases that require cellular immunity (i.e., cancer and protozoan infection). Here, we report on the use of a liposomal nanocarrier (lipid nanoparticles (LNPs)) composed of an SS-cleavable and pH-activated lipidlike material (ssPalm) as an in vivo DNA vaccine. After subcutaneous administration, the LNPs containing an ssPalmE, an ssPalm with vitamin E scaffolds, elicited a higher gene expression activity in comparison with the other LNPs composed of the ssPalms with different hydrophobic scaffolds. Immunization with the ssPalmE-LNPs encapsulating plasmid DNA that encodes ovalbumin (OVA, a model tumor antigen) or profilin (TgPF, a potent antigen of Toxoplasma gondii) induced substantial antitumor or antiprotozoan effects, respectively. Flow cytometry analysis of the cells that had taken up the LNPs in draining lymph nodes (dLNs) showed that the ssPalmE-LNPs were largely taken up by macrophages and a small number of dendritic cells. We found that the transient deletion of CD169+ macrophages, a subpopulation of macrophages that play a key role in cancer immunity, unexpectedly enhanced the activity of the DNA vaccine. These data suggest that the ssPalmE-LNPs are effective DNA vaccine carriers, and a strategy for avoiding their being trapped by CD169+ macrophages will be a promising approach for developing next-generation DNA vaccines.


Assuntos
Lipídeos/química , Nanopartículas/química , Infecções por Protozoários/imunologia , Vacinas de DNA/química , Vacinas de DNA/imunologia , Vitamina E/imunologia , Animais , Vacinas Anticâncer/química , Vacinas Anticâncer/imunologia , DNA/imunologia , Células Dendríticas/imunologia , Feminino , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Imunidade Celular/imunologia , Imunização/métodos , Lipossomos/química , Lipossomos/imunologia , Linfonodos/imunologia , Macrófagos/imunologia , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Neoplasias/imunologia , Ovalbumina/imunologia , Plasmídeos/imunologia , Vitamina E/química
8.
Exp Parasitol ; 216: 107942, 2020 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-32598889

RESUMO

The intracellular protozoan parasite Neospora caninum is incriminated to induce drastic economic losses in both livestock and pet animal industries. Neosporosis is primarily characterized by abortion in cattle and paralytic symptoms in dogs. Because there are no effective treatments or vaccines, diagnosis is critical for Neospora control. Thus, diversification of laboratory tests and specimens used for diagnosis of N. caninum is an essential scientific endeavor to judge and select the most appropriate diagnostic tool. Herein, we provide the first evidence for the utility of urine samples for demonstration of specific antibodies against N. caninum employing an experimentally infected murine model. Specific antibodies to recombinant N. caninum dense granule 7, surface antigen 1, and lysate antigen were assayed using different antibodies-based ELISAs. Urine based IgG ELISA efficiently discriminated between infected mice (acute or chronic infection), and those of non-infected mice. This effect was also noticed for IgG1 and IgG2a suggesting the utility of urine for assessment of T-helper 2- and T-helper 1-mediated immunities, respectively. In addition, reactivity of specific antibody in urine was also confirmed against parasites when indirect fluorescent antibody test was employed. Usefulness of urine as an additional clinical sample for Neospora diagnosis was confirmed via comparison with the relevant control non-infected and infected mouse sera as reference samples. Because of minimum invasiveness and ease of urine collection, this approach might offer new diagnostic opportunities for N. caninum either for the field or research purposes. However, further studies are required to extrapolate this preliminary study and results in the animal species of interest particularly in dogs.


Assuntos
Anticorpos Antiprotozoários/urina , Coccidiose/diagnóstico , Neospora/imunologia , Análise de Variância , Animais , Anticorpos Antiprotozoários/sangue , Chlorocebus aethiops , Coccidiose/imunologia , Coccidiose/parasitologia , Ensaio de Imunoadsorção Enzimática , Feminino , Técnica Indireta de Fluorescência para Anticorpo , Imunoglobulina G/sangue , Imunoglobulina G/urina , Imunoglobulina M/sangue , Imunoglobulina M/urina , Camundongos , Camundongos Endogâmicos BALB C , Neospora/isolamento & purificação , Células Vero
9.
BMC Genomics ; 20(1): 705, 2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-31506064

RESUMO

BACKGROUND: Infection with Toxoplasma gondii is thought to damage the brain and be a risk factor for neurological and psychotic disorders. The immune response-participating chemokine system has recently been considered vital for brain cell signaling and neural functioning. Here, we investigated the effect of the deficiency of C-C chemokine receptor 5 (CCR5), which is previously reported to be associated with T. gondii infection, on gene expression in the brain during T. gondii infection and the relationship between CCR5 and the inflammatory response against T. gondii infection in the brain. RESULTS: We performed a genome-wide comprehensive analysis of brain cells from wild-type and CCR5-deficient mice. Mouse primary brain cells infected with T. gondii were subjected to RNA sequencing. The expression levels of some genes, especially in astrocytes and microglia, were altered by CCR5-deficiency during T. gondii infection, and the gene ontology and Kyoto Encyclopedia of Genes and Genomes analysis revealed an enhanced immune response in the brain cells. The expression levels of genes which were highly differentially expressed in vitro were also investigated in the mouse brains during the T. gondii infections. Among the genes tested, only Saa3 (serum amyloid A3) showed partly CCR5-dependent upregulation during the acute infection phase. However, analysis of the subacute phase showed that in addition to Saa3, Hmox1 may also contribute to the protection and/or pathology partly via the CCR5 pathway. CONCLUSIONS: Our results indicate that CCR5 is involved in T. gondii infection in the brain where it contributes to inflammatory responses and parasite elimination. We suggest that the inflammatory response by glial cells through CCR5 might be associated with neurological injury during T. gondii infection to some extent.


Assuntos
Encéfalo/citologia , Encéfalo/parasitologia , Perfilação da Expressão Gênica , Receptores CCR5/deficiência , Toxoplasma/fisiologia , Animais , Astrócitos/metabolismo , Astrócitos/parasitologia , Encéfalo/metabolismo , Técnicas de Inativação de Genes , Camundongos , Microglia/metabolismo , Microglia/parasitologia , Receptores CCR5/genética
10.
Appl Environ Microbiol ; 84(18)2018 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-30006392

RESUMO

Neospora caninum is a protozoan parasite closely related to Toxoplasma gondii Neosporosis caused by N. caninum is considered one of the main causes of abortion in cattle and nervous-system dysfunction in dogs, and identification of the virulence factors of this parasite is important for the development of control measures. Here, we used a luciferase reporter assay to screen the dense granule proteins genes of N. caninum, and we found that NcGRA6, NcGRA7, and NcGRA14 are involved in the activation of the NF-κB, calcium/calcineurin, and cAMP/PKA signals. To analyze the functions of these proteins and Neospora cyclophilin, we successfully knocked out their genes in the Nc1 strain using plasmids containing the CRISPR/Cas9 components. Among the deficient lines, the NcGRA7-deficient parasites showed reduced virulence in mice. An RNA sequencing analysis of infected macrophage cultures showed that NcGRA7 mainly regulates the host cytokine and chemokine production. The levels of gamma interferon in the ascites fluid, CXCL10 expression in the peritoneal cells, and CCL2 expression in the spleen were lower 5 days after infection with the NcGRA7-deficient parasite than after infection with the parental strain. The parasite burden and the degree of necrosis in the brains of mice infected with the NcGRA7-deficient parasite were also lower than in those of the parental strain. Collectively, our data suggest that both the NcGRA7-dependent activation of the inflammatory response and the parasite burden are important in Neospora virulence.IMPORTANCENeospora caninum invades and replicates in a broad range of host species and cells within those hosts. The effector proteins exported by Neospora induce its pathogenesis by modulating the host immunity. We show that most of the transcriptomic effects in N. caninum-infected cells depend upon the activity of NcGRA7. A deficiency in NcGRA7 reduced the virulence of the parasite in mice. This study demonstrates the importance of NcGRA7 in the pathogenesis of neosporosis.


Assuntos
Coccidiose/imunologia , Neospora/metabolismo , Neospora/patogenicidade , Proteínas de Protozoários/metabolismo , Animais , Quimiocinas/genética , Quimiocinas/imunologia , Coccidiose/genética , Coccidiose/parasitologia , Citocinas/genética , Citocinas/imunologia , Feminino , Interações Hospedeiro-Patógeno , Humanos , Interferon gama/genética , Interferon gama/imunologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Neospora/genética , Proteínas de Protozoários/genética , Virulência
11.
Infect Immun ; 85(4)2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28138019

RESUMO

Toxoplasma gondii is a pathogen relevant to psychiatric disorders. We recently showed that reactivation of chronic T. gondii infection induced depression-like behaviors in mice. Furthermore, it has been hypothesized that depression-like behaviors are mediated via a host defense mechanism against invading pathogens; proximate mechanisms of this behavioral hypothesis remain unclear. In the present study, we investigate the contribution of indoleamine 2,3-dioxygenase (IDO), inflammation, and interferon gamma (IFN-γ) to anhedonic and despair-related behaviors in T. gondii-infected mice by using sucrose preference and forced-swim tests, respectively. First, we confirmed that BALB/c mice exhibited both sickness and depression-like behaviors during acute infection. Treatment of infected wild-type mice with minocycline (anti-inflammatory drug) abated sickness and anhedonic and despair-like behaviors, whereas in T. gondii-infected mice, treatment normalized kynurenine/tryptophan (Kyn/Trp) ratios in both plasma and brain tissue. Additionally, T. gondii infection failed to induce anhedonic and despair-like behaviors or increase the Kyn/Trp ratio in immunocompromised (IFN-γ-/-) mice, whereas sickness behavior was observed in both immunocompetent and IFN-γ-/- mice following infection. Furthermore, treatment with 1-methyl tryptophan (an IDO inhibitor) did not affect locomotor activity, attenuated clinical scores and anhedonic and despair-like behaviors, and resulted in normal Kyn/Trp ratios in T. gondii-infected wild-type mice. Although low levels of serotonin and dopamine were observed in the brain during acute and chronic infections, anhedonic and despair-like behaviors were not detected in the chronic stage of infection. Collectively, our results demonstrated that immune enhancement in response to infection with T. gondii resulted in IFN-γ production, IDO activation, and inflammation associated with anhedonic and despair-like behaviors.


Assuntos
Comportamento Animal , Interações Hospedeiro-Patógeno , Toxoplasma/imunologia , Toxoplasmose/imunologia , Toxoplasmose/microbiologia , Anedonia , Animais , Citocinas/genética , Citocinas/metabolismo , Modelos Animais de Doenças , Expressão Gênica , Indolamina-Pirrol 2,3,-Dioxigenase/genética , Indolamina-Pirrol 2,3,-Dioxigenase/metabolismo , Mediadores da Inflamação/metabolismo , Interferon gama/deficiência , Camundongos , Camundongos Knockout , Toxoplasmose/diagnóstico , Toxoplasmose/metabolismo
12.
Infect Immun ; 85(9)2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28630065

RESUMO

Toxoplasmosis can cause abortion in pregnant humans and other animals; however, the mechanism of abortion remains unknown. C-C chemokine receptor type 5 (CCR5) is essential for host defense against Toxoplasma gondii infection. To investigate the relationship between CCR5 and abortion in toxoplasmosis, we inoculated wild-type and CCR5-deficient (CCR5-/-) mice with T. gondii tachyzoites intraperitoneally on day 3 of pregnancy (embryonic day 3 [E3]). The pregnancy rate decreased as pregnancy progressed in infected wild-type mice. Histopathologically, no inflammatory lesions were observed in the fetoplacental tissues. Although wild-type mice showed a higher parasite burden at the implantation sites than did CCR5-/- mice at E6 (3 days postinfection [dpi]), T. gondii antigen was detected only in the uterine tissue and not in the fetoplacental tissues. At E8 (5 dpi), the embryos in infected wild-type mice showed poor development compared with those of infected CCR5-/- mice, and apoptosis was observed in poorly developed embryos. Compared to uninfected mice, infected wild-type mice showed increased CCR5 expression at the implantation site at E6 and E8. Furthermore, analyses of mRNA expression in the uterus of nonpregnant and pregnant mice suggested that a lack of the CCR5 gene and the downregulation of tumor necrosis factor alpha (TNF-α) and CCL3 expression at E6 (3 dpi) are important factors for the maintenance of pregnancy following T. gondii infection. These results suggested that CCR5 signaling is involved in embryo loss in T. gondii infection during early pregnancy and that apoptosis is associated with embryo loss rather than direct damage to the fetoplacental tissues.


Assuntos
Aborto Séptico/patologia , Complicações Infecciosas na Gravidez/patologia , Receptores CCR5/metabolismo , Toxoplasmose Animal/complicações , Animais , Modelos Animais de Doenças , Feminino , Feto/patologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Gravidez , Útero/patologia
13.
Exp Parasitol ; 176: 59-65, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28286324

RESUMO

Theileria equi and Babesia caballi are the causative agents of equine piroplasmosis (EP), which affects equine production in various parts of the world. However, a safe and effective drug is not currently available for treatment of EP. Dihydroorotate dehydrogenase (DHODH) is the fourth enzyme in the de novo pyrimidine synthesis pathway and has been known as a novel drug target for several apicomplexan protozoan parasites. In this study, we evaluated four DHODH inhibitors; atovaquone (ATV), leflunomide (LFN), brequinar (Breq), and 7-hydroxy-5-[1,2,4] triazolo [1,5,a] pyrimidine (TAZ) on the growth of T. equi and B. caballi in vitro and compared them to diminacene aceturate (Di) as the control drug. The growth of T. equi and B. caballi was significantly hindered by all inhibitors except TAZ. The half maximal inhibitory concentration (IC50) of ATV, LFN, Breq and Di against T. equi was approximately 0.028, 109, 11 and 40 µM, respectively, whereas the IC50 of ATV, LFN, Breq and Di against B. caballi was approximately 0.128, 193, 5.2 and 16.2 µM, respectively. Using bioinformatics and Western blot analysis, we showed that TeDHODH was similar to other Babesia parasite DHODHs, and confirmed that targeting DHODHs could be useful for the development of novel chemotherapeutics for treatment of EP.


Assuntos
Babesia/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/antagonistas & inibidores , Theileria/efeitos dos fármacos , Sequência de Aminoácidos , Animais , Antiprotozoários/farmacologia , Atovaquona/farmacologia , Babesia/classificação , Babesia/crescimento & desenvolvimento , Babesiose/tratamento farmacológico , Babesiose/parasitologia , Compostos de Bifenilo/farmacologia , Biologia Computacional , Di-Hidro-Orotato Desidrogenase , Diminazena/análogos & derivados , Diminazena/farmacologia , Inibidores Enzimáticos/uso terapêutico , Doenças dos Cavalos/tratamento farmacológico , Doenças dos Cavalos/parasitologia , Cavalos , Concentração Inibidora 50 , Isoxazóis/farmacologia , Leflunomida , Camundongos , Peso Molecular , Oxirredutases atuantes sobre Doadores de Grupo CH-CH/química , Filogenia , Plasmodium berghei/efeitos dos fármacos , Plasmodium berghei/crescimento & desenvolvimento , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Theileria/classificação , Theileria/crescimento & desenvolvimento , Theileriose/tratamento farmacológico , Theileriose/parasitologia
14.
Nucleic Acids Res ; 43(Database issue): D631-6, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25414358

RESUMO

The previous release of our Full-parasites database (http://fullmal.hgc.jp/) brought enhanced functionality, an expanded full-length cDNA content, and new RNA-Seq datasets from several important apicomplexan parasites. The 2015 update witnesses the major shift in the databases content with focus on diverse transcriptomes of the apicomplexan parasites. The content of the database was substantially enriched with transcriptome information for new apicomplexan parasites. The latest version covers a total of 17 species, with addition of our newly generated RNA-Seq data of a total of 909,150,388 tags. Moreover, we have generated and included two novel and unique datasets, which represent diverse nature of transcriptomes in individual parasites in vivo and in vitro. One is the data collected from 116 Indonesian patients infected with Plasmodium falciparum. The other is a series of transcriptome data collected from a total of 38 single cells of P. falciparum cultured in vitro. We believe that with the recent advances our database becomes an even better resource and a unique platform in the analysis of apicomplexan parasites and their interaction with their hosts. To adequately reflect the recent modifications and the current content we have changed the database name to DB-AT--DataBase of Apicomplexa Transcriptomes.


Assuntos
Apicomplexa/genética , Bases de Dados Genéticas , Perfilação da Expressão Gênica , Humanos , Internet , Malária Falciparum/parasitologia , Plasmodium falciparum/genética , Análise de Sequência de RNA
15.
Infect Immun ; 84(3): 845-55, 2016 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-26755155

RESUMO

In the current study, we examined the effects of depletion of phagocytes on the progression of Plasmodium yoelii 17XNL infection in mice. Strikingly, the depletion of phagocytic cells, including macrophages, with clodronate in the acute phase of infection significantly reduced peripheral parasitemia but increased mortality. Moribund mice displayed severe pathological damage, including coagulative necrosis in liver and thrombi in the glomeruli, fibrin deposition, and tubular necrosis in kidney. The severity of infection was coincident with the increased sequestration of parasitized erythrocytes, the systematic upregulation of inflammation and coagulation, and the disruption of endothelial integrity in the liver and kidney. Aspirin was administered to the mice to minimize the risk of excessive activation of the coagulation response and fibrin deposition in the renal tissue. Interestingly, treatment with aspirin reduced the parasite burden and pathological lesions in the renal tissue and improved survival of phagocyte-depleted mice. Our data imply that the depletion of phagocytic cells, including macrophages, in the acute phase of infection increases the severity of malarial infection, typified by multiorgan failure and high mortality.


Assuntos
Injúria Renal Aguda/fisiopatologia , Malária/complicações , Fagócitos/citologia , Plasmodium yoelii/fisiologia , Injúria Renal Aguda/etiologia , Animais , Contagem de Células , Eritrócitos/parasitologia , Feminino , Humanos , Malária/parasitologia , Camundongos , Camundongos Endogâmicos C57BL
16.
Infect Immun ; 84(10): 2861-70, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27456832

RESUMO

Chronic infection with Toxoplasma gondii becomes established in tissues of the central nervous system, where parasites may directly or indirectly modulate neuronal function. Epidemiological studies have revealed that chronic infection in humans is a risk factor for developing mental diseases. However, the mechanisms underlying parasite-induced neuronal dysfunction in the brain remain unclear. Here, we examined memory associated with conditioned fear in mice and found that T. gondii infection impairs consolidation of conditioned fear memory. To examine the brain pathology induced by T. gondii infection, we analyzed the parasite load and histopathological changes. T. gondii infects all brain areas, yet the cortex exhibits more severe tissue damage than other regions. We measured neurotransmitter levels in the cortex and amygdala because these regions are involved in fear memory expression. The levels of dopamine metabolites but not those of dopamine were increased in the cortex of infected mice compared with those in the cortex of uninfected mice. In contrast, serotonin levels were decreased in the amygdala and norepinephrine levels were decreased in the cortex and amygdala of infected mice. The levels of cortical dopamine metabolites were associated with the time spent freezing in the fear-conditioning test. These results suggest that T. gondii infection affects fear memory through dysfunction of the cortex and amygdala. Our findings provide insight into the mechanisms underlying the neurological changes seen during T. gondii infection.


Assuntos
Tonsila do Cerebelo/fisiopatologia , Córtex Cerebral/fisiopatologia , Medo/fisiologia , Consolidação da Memória/fisiologia , Memória de Curto Prazo/fisiologia , Doenças do Sistema Nervoso/parasitologia , Toxoplasma/fisiologia , Toxoplasmose Animal , Tonsila do Cerebelo/parasitologia , Análise de Variância , Animais , Comportamento Animal/fisiologia , Biomarcadores/análise , Córtex Cerebral/parasitologia , Cromatografia Líquida de Alta Pressão , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Doenças do Sistema Nervoso/fisiopatologia , Carga Parasitária , Toxoplasmose Animal/parasitologia , Toxoplasmose Animal/fisiopatologia
17.
Cell Microbiol ; 17(7): 1069-83, 2015 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-25628099

RESUMO

The apical complex of Toxoplasma gondii enables it to invade virtually all nucleated cells in warm-blooded animals, including humans, making it a parasite of global importance. Anti-T. gondii cellular defence mechanisms depend largely on interferon (IFN)-γ production by immune cells. However, the molecular mechanism of IFN-ß-mediated defence remains largely unclear. Here, mouse peritoneal macrophages and murine embryonic fibroblasts (MEFs) primed with recombinant IFN-ß and IFN-γ showed different pathways of activation. Treatment of these cells with IFN-ß or IFN-γ inhibited T. gondii (type II PLK strain) growth. Priming macrophages with IFN-ß had no effect on inflammatory cytokine expression, inducible nitric oxide synthase or indoleamine 2,3-dioxygenase, nor did it have an effect on their metabolites, nitric oxide and kynurenine respectively. In contrast, IFN-γ stimulation was characterized by classical macrophage activation and T. gondii elimination. IFN-ß activation recruited the immunity-related GTPase M1 (IRGM1) to the parasitophorous vacuole in the macrophages and MEFs. Anti-toxoplasma activities induced by IFN-ß were significantly reduced after IRGM1 knockdown in murine macrophages and in IRGM1-deficient MEFs. Thus, this study unravels an alternative pathway of macrophage activation by IFN-ß and provides a mechanistic explanation for the contribution of IRGM1 induced by IFN-ß to the elimination of T. gondii.


Assuntos
Fibroblastos/imunologia , Proteínas de Ligação ao GTP/metabolismo , Interferon beta/metabolismo , Macrófagos Peritoneais/imunologia , Toxoplasma/crescimento & desenvolvimento , Toxoplasma/imunologia , Animais , Células Cultivadas , Fibroblastos/parasitologia , Técnicas de Silenciamento de Genes , Técnicas de Inativação de Genes , Interferon gama/metabolismo , Macrófagos Peritoneais/parasitologia , Camundongos , Camundongos Knockout , Vacúolos/metabolismo , Vacúolos/parasitologia
18.
Infect Immun ; 83(1): 8-16, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25312951

RESUMO

In the present study, we examined the contributions of macrophages to the outcome of infection with Babesia microti, the etiological agent of human and rodent babesiosis, in BALB/c mice. Mice were treated with clodronate liposome at different times during the course of B. microti infection in order to deplete the macrophages. Notably, a depletion of host macrophages at the early and acute phases of infection caused a significant elevation of parasitemia associated with remarkable mortality in the mice. The depletion of macrophages at the resolving and latent phases of infection resulted in an immediate and temporal exacerbation of parasitemia coupled with mortality in mice. Reconstituting clodronate liposome-treated mice at the acute phase of infection with macrophages from naive mice resulted in a slight reduction in parasitemia with improved survival compared to that of mice that received the drug alone. These results indicate that macrophages play a crucial role in the control of and resistance to B. microti infection in mice. Moreover, analyses of host immune responses revealed that macrophage-depleted mice diminished their production of Th1 cell cytokines, including gamma interferon (IFN-γ) and tumor necrosis factor alpha (TNF-α). Furthermore, depletion of macrophages at different times exaggerated the pathogenesis of the infection in deficient IFN-γ(-/-) and severe combined immunodeficiency (SCID) mice. Collectively, our data provide important clues about the role of macrophages in the resistance and control of B. microti and imply that the severity of the infection in immunocompromised patients might be due to impairment of macrophage function.


Assuntos
Babesia microti/imunologia , Babesiose/imunologia , Macrófagos/imunologia , Animais , Antiprotozoários/uso terapêutico , Babesiose/tratamento farmacológico , Ácido Clodrônico/uso terapêutico , Citocinas/metabolismo , Feminino , Interferon gama/metabolismo , Camundongos Endogâmicos BALB C , Análise de Sobrevida , Células Th1/imunologia , Resultado do Tratamento
19.
BMC Microbiol ; 14: 76, 2014 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-24661782

RESUMO

BACKGROUND: Toxoplasma gondii hijacks host cells to allow it to disseminate throughout a host animal; however, the migratory machinery involved in this process has not been well characterized. We examined the functional role of T. gondii cyclophilin 18 (TgCyp18) in host cell recruitment using recombinant parasites transfected with TgCyp18. RESULTS: High levels of TgCyp18 enhanced IL-12 production in cysteine-cysteine chemokine receptor 5 (CCR5) knockout mice (CCR5-/-) that had been infected peritoneally with T. gondii. Recruitment of CD11b+ cells to the infection site was enhanced in a CCR5-independent manner. T. gondii spread to several organs, particularly the liver, in a TgCyp18-dependent and CCR5-independent manner. Additionally, CCL5 levels were upregulated in macrophages treated with recombinant protein TgCyp18 and in the peritoneal fluids of the infected CCR5-/- mice. Furthermore, the chemokines involved in macrophage migration, CCL2 and CXCL10, were upregulated in the livers of CCR5-/- mice infected with recombinant parasites that had been transfected with TgCyp18. CONCLUSION: TgCyp18 may play a crucial role in macrophage migration, and in assisting with transport of T. gondii via CCR5-independent mechanisms. TgCyp18 may also play a role with CCL5 in the migration of macrophages to the site of infection, and with CCL2 and CXCL10 in the transport of T. gondii-infected cells to the liver.


Assuntos
Movimento Celular , Ciclofilinas/biossíntese , Expressão Gênica , Macrófagos/fisiologia , Receptores CCR5/metabolismo , Toxoplasma/genética , Animais , Ciclofilinas/genética , Feminino , Macrófagos/parasitologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Recombinantes/biossíntese , Proteínas Recombinantes/genética , Toxoplasma/fisiologia
20.
Malar J ; 13: 426, 2014 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-25373617

RESUMO

BACKGROUND: The design and development of an effective malaria vaccine against the pre-erythrocytic and erythrocytic-stages of infection present a great challenge. METHODS: In the present study, protective efficacy of oligomannose-coated liposome (OML)-entrapped merozoite and sporozoite antigens against Plasmodium berghei challenge infection in BALB/c mice was evaluated. RESULTS: Subcutaneous immunization with truncated merozoite surface protein 1 entrapped with OML (OML-PbMSP1) prolonged survival, but failed to protect the mice from erythrocytic-stage infection, despite the antigen-specific antibody responses induced by the immunization regimen. In contrast, immunization with circumsporozoite protein entrapped with OML (OML-PbCSP) elicited antigen-specific humoral and cellular responses, which correlated with substantial protection against sporozoite challenge infections. CONCLUSIONS: The current results represent the use of an oligomannose-coated liposome-based vaccine against pre-erythrocytic and erythrocytic stages malaria infection. This approach may offer a new vaccination strategy against malaria infection.


Assuntos
Lipossomos/imunologia , Vacinas Antimaláricas/imunologia , Malária/prevenção & controle , Plasmodium berghei/imunologia , Proteínas de Protozoários/imunologia , Esporozoítos/imunologia , Animais , Modelos Animais de Doenças , Feminino , Injeções Subcutâneas , Malária/imunologia , Vacinas Antimaláricas/administração & dosagem , Manose , Proteína 1 de Superfície de Merozoito/imunologia , Camundongos , Camundongos Endogâmicos BALB C
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA