Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
Cell ; 175(1): 266-276.e13, 2018 09 20.
Artigo em Inglês | MEDLINE | ID: mdl-30166209

RESUMO

A fundamental challenge of biology is to understand the vast heterogeneity of cells, particularly how cellular composition, structure, and morphology are linked to cellular physiology. Unfortunately, conventional technologies are limited in uncovering these relations. We present a machine-intelligence technology based on a radically different architecture that realizes real-time image-based intelligent cell sorting at an unprecedented rate. This technology, which we refer to as intelligent image-activated cell sorting, integrates high-throughput cell microscopy, focusing, and sorting on a hybrid software-hardware data-management infrastructure, enabling real-time automated operation for data acquisition, data processing, decision-making, and actuation. We use it to demonstrate real-time sorting of microalgal and blood cells based on intracellular protein localization and cell-cell interaction from large heterogeneous populations for studying photosynthesis and atherothrombosis, respectively. The technology is highly versatile and expected to enable machine-based scientific discovery in biological, pharmaceutical, and medical sciences.


Assuntos
Citometria de Fluxo/métodos , Ensaios de Triagem em Larga Escala/métodos , Processamento de Imagem Assistida por Computador/métodos , Animais , Aprendizado Profundo , Humanos
2.
Cytometry A ; 103(1): 88-97, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35766305

RESUMO

Intelligent image-activated cell sorting (iIACS) has enabled high-throughput image-based sorting of single cells with artificial intelligence (AI) algorithms. This AI-on-a-chip technology combines fluorescence microscopy, AI-based image processing, sort-timing prediction, and cell sorting. Sort-timing prediction is particularly essential due to the latency on the order of milliseconds between image acquisition and sort actuation, during which image processing is performed. The long latency amplifies the effects of the fluctuations in the flow speed of cells, leading to fluctuation and uncertainty in the arrival time of cells at the sort point on the microfluidic chip. To compensate for this fluctuation, iIACS measures the flow speed of each cell upstream, predicts the arrival timing of the cell at the sort point, and activates the actuation of the cell sorter appropriately. Here, we propose and demonstrate a machine learning technique to increase the accuracy of the sort-timing prediction that would allow for the improvement of sort event rate, yield, and purity. Specifically, we trained an algorithm to predict the sort timing for morphologically heterogeneous budding yeast cells. The algorithm we developed used cell morphology, position, and flow speed as inputs for prediction and achieved 41.5% lower prediction error compared to the previously employed method based solely on flow speed. As a result, our technique would allow for an increase in the sort event rate of iIACS by a factor of ~2.


Assuntos
Algoritmos , Inteligência Artificial , Separação Celular , Citometria de Fluxo/métodos , Aprendizado de Máquina
3.
Cytometry A ; 103(2): 162-167, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-35938513

RESUMO

There is a global concern about the safety of COVID-19 vaccines associated with platelet function. However, their long-term effects on overall platelet activity remain poorly understood. Here we address this problem by image-based single-cell profiling and temporal monitoring of circulating platelet aggregates in the blood of healthy human subjects, before and after they received multiple Pfizer-BioNTech (BNT162b2) vaccine doses over a time span of nearly 1 year. Results show no significant or persisting platelet aggregation trends following the vaccine doses, indicating that any effects of vaccinations on platelet turnover, platelet activation, platelet aggregation, and platelet-leukocyte interaction was insignificant.


Assuntos
Vacinas contra COVID-19 , COVID-19 , Humanos , Vacinas contra COVID-19/efeitos adversos , Vacina BNT162 , COVID-19/prevenção & controle , Plaquetas , Vacinação/efeitos adversos
4.
Proc Natl Acad Sci U S A ; 116(32): 15842-15848, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31324741

RESUMO

Combining the strength of flow cytometry with fluorescence imaging and digital image analysis, imaging flow cytometry is a powerful tool in diverse fields including cancer biology, immunology, drug discovery, microbiology, and metabolic engineering. It enables measurements and statistical analyses of chemical, structural, and morphological phenotypes of numerous living cells to provide systematic insights into biological processes. However, its utility is constrained by its requirement of fluorescent labeling for phenotyping. Here we present label-free chemical imaging flow cytometry to overcome the issue. It builds on a pulse pair-resolved wavelength-switchable Stokes laser for the fastest-to-date multicolor stimulated Raman scattering (SRS) microscopy of fast-flowing cells on a 3D acoustic focusing microfluidic chip, enabling an unprecedented throughput of up to ∼140 cells/s. To show its broad utility, we use the SRS imaging flow cytometry with the aid of deep learning to study the metabolic heterogeneity of microalgal cells and perform marker-free cancer detection in blood.


Assuntos
Citometria de Fluxo/métodos , Imageamento Tridimensional , Análise Espectral Raman/métodos , Linhagem Celular Tumoral , Humanos , Microalgas/citologia , Microalgas/metabolismo , Coloração e Rotulagem
6.
Anal Chem ; 90(19): 11280-11289, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30138557

RESUMO

Microalgal biofuels and biomass have ecofriendly advantages as feedstocks. Improved understanding and utilization of microalgae require large-scale analysis of the morphological and metabolic heterogeneity within populations. Here, with Euglena gracilis as a model microalgal species, we evaluate how fluorescence- and brightfield-derived-image-based descriptors vary during environmental stress at the single-cell level. This is achieved with a new multiparameter fluorescence-imaging cytometric technique that allows the assaying of thousands of cells per experiment. We track morphological changes, including the intensity and distribution of intracellular lipid droplets, and pigment autofluorescence. The combined fluorescence-morphological analysis identifies new metrics not accessible with traditional flow cytometry, including the lipid-to-cell-area ratio (LCAR), which shows promise as an indicator of oil productivity per biomass. Single-cell metrics of lipid productivity were highly correlated ( R2 > 0.90, p < 0.005) with bulk oil extraction. Such chemomorphological atlases of algal species can help optimize growth conditions and selection approaches for large-scale biomass production.


Assuntos
Euglena gracilis/citologia , Euglena gracilis/metabolismo , Citometria de Fluxo , Imagem Óptica , Análise de Célula Única/métodos , Espaço Intracelular/metabolismo
8.
Cytometry A ; 95(6): 598-644, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-31207046
9.
Lab Chip ; 22(5): 876-889, 2022 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-35142325

RESUMO

Imaging flow cytometry (IFC) has become a powerful tool for diverse biomedical applications by virtue of its ability to image single cells in a high-throughput manner. However, there remains a challenge posed by the fundamental trade-off between throughput, sensitivity, and spatial resolution. Here we present deep-learning-enhanced imaging flow cytometry (dIFC) that circumvents this trade-off by implementing an image restoration algorithm on a virtual-freezing fluorescence imaging (VIFFI) flow cytometry platform, enabling higher throughput without sacrificing sensitivity and spatial resolution. A key component of dIFC is a high-resolution (HR) image generator that synthesizes "virtual" HR images from the corresponding low-resolution (LR) images acquired with a low-magnification lens (10×/0.4-NA). For IFC, a low-magnification lens is favorable because of reduced image blur of cells flowing at a higher speed, which allows higher throughput. We trained and developed the HR image generator with an architecture containing two generative adversarial networks (GANs). Furthermore, we developed dIFC as a method by combining the trained generator and IFC. We characterized dIFC using Chlamydomonas reinhardtii cell images, fluorescence in situ hybridization (FISH) images of Jurkat cells, and Saccharomyces cerevisiae (budding yeast) cell images, showing high similarities of dIFC images to images obtained with a high-magnification lens (40×/0.95-NA), at a high flow speed of 2 m s-1. We lastly employed dIFC to show enhancements in the accuracy of FISH-spot counting and neck-width measurement of budding yeast cells. These results pave the way for statistical analysis of cells with high-dimensional spatial information.


Assuntos
Algoritmos , Imageamento Tridimensional , Contagem de Células , Citometria de Fluxo/métodos , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Hibridização in Situ Fluorescente
10.
Nat Commun ; 12(1): 7135, 2021 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-34887400

RESUMO

A characteristic clinical feature of COVID-19 is the frequent incidence of microvascular thrombosis. In fact, COVID-19 autopsy reports have shown widespread thrombotic microangiopathy characterized by extensive diffuse microthrombi within peripheral capillaries and arterioles in lungs, hearts, and other organs, resulting in multiorgan failure. However, the underlying process of COVID-19-associated microvascular thrombosis remains elusive due to the lack of tools to statistically examine platelet aggregation (i.e., the initiation of microthrombus formation) in detail. Here we report the landscape of circulating platelet aggregates in COVID-19 obtained by massive single-cell image-based profiling and temporal monitoring of the blood of COVID-19 patients (n = 110). Surprisingly, our analysis of the big image data shows the anomalous presence of excessive platelet aggregates in nearly 90% of all COVID-19 patients. Furthermore, results indicate strong links between the concentration of platelet aggregates and the severity, mortality, respiratory condition, and vascular endothelial dysfunction level of COVID-19 patients.


Assuntos
COVID-19/diagnóstico , Agregação Plaquetária , Análise de Célula Única , Trombose/virologia , COVID-19/sangue , Feminino , Humanos , Masculino , Microscopia , Fatores Sexuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA