Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Acta Pharmacol Sin ; 43(11): 2905-2916, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-35459869

RESUMO

Anterior gradient 2 (AGR2), a protein disulfide isomerase (PDI), is a multifunctional protein under physiological and pathological conditions. In this study we investigated the roles of AGR2 in regulating cholesterol biogenesis, lipid-lowering efficiency of lovastatin as well as in protection against hypercholesterolemia/statin-induced liver injury. We showed that AGR2 knockout significantly decreased hepatic and serum total cholesterol (TC) and low-density lipoprotein cholesterol (LDL-C) in mice with whole-body or hepatocyte-specific Agr2-null mutant, compared with the levels in their wild-type littermates fed a normal chow diet (NCD) or high-fat diet (HFD). In contrast, mice with AGR2 overexpression (Agr2/Tg) exhibited an increased cholesterol level. Mechanistic studies revealed that AGR2 affected cholesterol biogenesis via activation of AKT/sterol regulatory element-binding protein-2 (SREBP2), to some extent, in a PDI motif-dependent manner. Moreover, elevated AGR2 led to a significant decrease in the lipid-lowering efficacy of lovastatin (10 mg· kg-1· d-1, ip, for 2 weeks) in mice with hypercholesterolemia (hyperCho), which was validated by results obtained from clinical samples in statin-treated patients. We showed that lovastatin had limited effect on AGR2 expression, but AGR2 was inducible in Agr2/Tg mice fed a HFD. Further investigations demonstrated that drug-induced liver toxicity and inflammatory reactions were alleviated in hypercholesterolemic Agr2/Tg mice, suggesting the dual functions of AGR2 in lipid management and hyperCho/statin-induced liver injury. Importantly, the AGR2-reduced lipid-lowering efficacy of lovastatin was attenuated, at least partially, by co-administration of a sulfhydryl-reactive compound allicin (20 mg· kg-1· d-1, ip, for 2 weeks). These results demonstrate a novel role of AGR2 in cholesterol metabolism, drug resistance and liver protection, suggesting AGR2 as a potential predictor for selection of lipid-lowering drugs in clinic.


Assuntos
Doença Hepática Crônica Induzida por Substâncias e Drogas , Inibidores de Hidroximetilglutaril-CoA Redutases , Hipercolesterolemia , Camundongos , Animais , Lovastatina/farmacologia , Lovastatina/uso terapêutico , Lovastatina/metabolismo , Hipercolesterolemia/tratamento farmacológico , Inibidores de Hidroximetilglutaril-CoA Redutases/metabolismo , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Doença Hepática Crônica Induzida por Substâncias e Drogas/tratamento farmacológico , LDL-Colesterol , Fígado/metabolismo
2.
Acta Pharmacol Sin ; 37(6): 814-24, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-27133304

RESUMO

AIM: Jungermannenone A and B (JA, JB) are new ent-kaurane diterpenoids isolated from Chinese liverwort Jungermannia fauriana, which show anti-proliferation activities in cancer cells. In this study we investigated the mechanisms underlying the anticancer action of JA and JB in PC3 human prostate cancer cells in vitro. METHODS: A panel of 9 human cancer cell lines was tested. Cell proliferation was assessed with a real-time cell analyzer and MTT assay. Cell apoptosis, cell cycle distribution and ROS levels were measured using cytometry. Mitochondrial damage was examined by transmission electron microscopy. DNA damage was detected with comet assay. Apoptotic, DNA damage- and cell cycle-related proteins were analyzed using Western blotting. The expression of DNA repair genes was measured with qRT-PCR. RESULTS: Both JA and JB exerted potent anti-proliferative action against the 9 cancer cell lines, and PC3 cells were more sensitive with IC50 values of 1.34±0.09 and 4.93±0.20 µmol/L, respectively. JA (1.5 µmol/L) and JB (5 µmol/L) induced PC3 cell apoptosis, which was attenuated by the caspase inhibitor Z-VAD. Furthermore, both JA and JB caused mitochondrial damage and ROS accumulation in PC3 cells, whereas vitamin C blocked the ROS accumulation and attenuated the cytotoxicity of JA and JB. Moreover, both JA and JB induced DNA damage, accompanied by downregulated DNA repair proteins Ku70/Ku80 and RDA51. JA induced marked cell cycle arrest at the G0/G1 phase, which was related to c-Myc suppression, whereas JB enforced the cell cycle blockade in the G2/M phase, which associated with activation of the JNK signaling. CONCLUSION: Both JA and JB induce prostate cancer apoptosis via ROS accumulation and induction of cell cycle arrest.


Assuntos
Antineoplásicos Fitogênicos/química , Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Ciclo Celular/efeitos dos fármacos , Diterpenos do Tipo Caurano/química , Diterpenos do Tipo Caurano/farmacologia , Neoplasias da Próstata/tratamento farmacológico , Linhagem Celular Tumoral , Hepatófitas/química , Humanos , Masculino , Próstata/efeitos dos fármacos , Próstata/metabolismo , Próstata/patologia , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Espécies Reativas de Oxigênio/metabolismo
3.
Eur J Med Chem ; 129: 186-208, 2017 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-28222318

RESUMO

A series of macrocyclic bisbibenzyls with novel skeletons was designed, synthesized, and evaluated for antiproliferative activity against five anthropic cancer cell lines. Among these novel molecules, compound 47 displayed excellent anticancer activity against HeLa, k562, HCC1428, HT29 and PC-3/Doc cell lines, with IC50 values ranging from of 1.51 µM-5.51 µM, which were more potent than the parent compound, marchantin C. Compounds 44 and 55 with novel bisbibenzyl skeletons also exhibited significantly improved antiproliferative potency. Structure-activity relationship (SAR) analyses of these synthesized compounds were also performed. In addition, compound 47 effectively inhibited tubulin polymerization in HCC1482 cells and induced HCC1482 cell cycle arrest at the G2/M phase in a concentration-dependent manner. The binding mode of compound 47 to tubulin was also investigated utilizing a molecular docking study. In conclusion, the present study discovered several potent antitubulin compounds with novel bisbibenzyl skeletons, and our systematic studies revealed new scaffolds that target tubulin and mitosis and provide progress towards the discovery of novel antitumor drugs discovery.


Assuntos
Antineoplásicos/síntese química , Bibenzilas/farmacologia , Compostos Macrocíclicos/farmacologia , Moduladores de Tubulina/síntese química , Antineoplásicos/farmacologia , Bibenzilas/síntese química , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Desenho de Fármacos , Humanos , Compostos Macrocíclicos/síntese química , Modelos Moleculares , Simulação de Acoplamento Molecular , Relação Estrutura-Atividade , Tubulina (Proteína)/metabolismo , Moduladores de Tubulina/farmacologia
4.
Eur J Med Chem ; 121: 484-499, 2016 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-27318123

RESUMO

A series of novel macrocyclic bisbibenzyl analogues was designed, synthesized, and evaluated for their antiproliferative activity in vitro. All of the compounds were tested in five anthropic cancer cell lines, including a multidrug-resistant phenotype. Among these novel molecules, compounds 88, 92 and 94 displayed excellent anticancer activity against Hela, k562, HCC1428, HT29, and PC-3/Doc cell lines, with average IC50 values ranging from 2.23 µM to 3.86 µM, and were more potent than the parental compound marchantin C and much more potent than the positive control Adriamycin. In addition, the mechanism of action of compound 88 was investigated by cell cycle analysis and a tubulin polymerization assay in HCC1482 cells. The binding mode of compound 88 to tubulin was also investigated utilizing a molecular docking study. In conclusion, the present study improves our understanding of the action of bisbibenzyl-based tubulin polymerization inhibitors and provides a new molecular scaffold for the further development of antitumor agents that target tubulin.


Assuntos
Desenho de Fármacos , Compostos Macrocíclicos/síntese química , Compostos Macrocíclicos/farmacologia , Multimerização Proteica/efeitos dos fármacos , Moduladores de Tubulina/síntese química , Moduladores de Tubulina/farmacologia , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Técnicas de Química Sintética , Humanos , Compostos Macrocíclicos/química , Simulação de Acoplamento Molecular , Estrutura Quaternária de Proteína , Relação Estrutura-Atividade , Moduladores de Tubulina/química , Moduladores de Tubulina/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA