RESUMO
A new method for the synthesis of heterocyclic systems containing tetrazole and tetrahydroisoquinoline is developed via the performance of one-pot Ugi-azide and Heck cyclization reactions. The integration of the multicomponent and post-condensation reactions in one-pot maximizes the pot-, atom-, and step-economy (PASE).
RESUMO
BACKGROUND: For cereal crop breeding, it is meaningful to improve utilization efficiency (NUE) under low nitrogen (LN) levels while maintaining crop yield. OsCBL1-knockdown (OsCBL1-KD) plants exhibited increased nitrogen accumulation and NUE in the field of low N level. RESULTS: OsCBL1-knockdown (OsCBL1-KD) in rice increased the expression of a nitrate transporter gene OsNRT2.2. In addition, the expression of OsNRT2.2, was suppressed by OsCCA1, a negative regulator, which could directly bind to the MYB-binding elements (EE) in the region of OsNRT2.2 promoter. The OsCCA1 expression was found to be down-regulated in OsCBL1-KD plants. At the low Nitrogen (N) level field, the OsCBL1-KD plants exhibited a substantial accumulation of content and higher NUE, and their actual biomass remained approximately as the same as that of the wild type. CONCLUSION: These results indicated that down-regulation of OsCBL1 expression could upregulate the expression of OsNRT2.2 by suppressing the expression of OsCCA1and then increasing the NUE of OsCBL1-KD plants under low nitrogen availability.
Assuntos
Nitrogênio , Oryza , Nitrogênio/metabolismo , Proteínas de Transporte de Ânions/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Oryza/genética , Oryza/metabolismo , Nitratos/metabolismo , Regulação da Expressão Gênica de Plantas , Melhoramento VegetalRESUMO
Rice cytoplasmic male sterility (CMS) provides an exceptional model for studying genetic interaction within plant nuclei given its inheritable trait of non-functional male gametophyte. Gaining a comprehensive understanding of the genes and pathways associated with the CMS mechanism is imperative for improving the vigor of hybrid rice agronomically, such as its productivity. Here, we observed a significant decrease in the expression of a gene named OsRab7 in the anther of the CMS line (SJA) compared to the maintainer line (SJB). OsRab7 is responsible for vesicle trafficking and loss function of OsRab7 significantly reduced pollen fertility and setting rate relative to the wild type. Meanwhile, over-expression of OsRab7 enhanced pollen fertility in the SJA line while a decrease in its expression in the SJB line led to the reduced pollen fertility. Premature tapetum and abnormal development of microspores were observed in the rab7 mutant. The expression of critical genes involved in tapetum development (OsMYB103, OsPTC1, OsEAT1 and OsAP25) and pollen development (OsMSP1, OsDTM1 and OsC4) decreased significantly in the anther of rab7 mutant. Reduced activities of the pDR5::GUS marker in the young panicle and anther of the rab7 mutant were also observed. Furthermore, the mRNA levels of genes involved in auxin biosynthesis (YUCCAs), auxin transport (PINs), auxin response factors (ARFs), and members of the IAA family (IAAs) were all downregulated in the rab7 mutant, indicating its impact on auxin signaling and distribution. In summary, these findings underscore the importance of OsRab7 in rice pollen development and its potential link to cytoplasmic male sterility.
Assuntos
Regulação da Expressão Gênica de Plantas , Oryza , Infertilidade das Plantas , Proteínas de Plantas , Pólen , Oryza/genética , Oryza/crescimento & desenvolvimento , Pólen/genética , Pólen/crescimento & desenvolvimento , Infertilidade das Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Fertilidade/genética , Citoplasma/metabolismo , Citoplasma/genética , Proteínas rab de Ligação ao GTP/genética , Proteínas rab de Ligação ao GTP/metabolismo , proteínas de unión al GTP Rab7RESUMO
Currently, porcine coronaviruses are prevalent in pigs, and due to the outbreak of COVID-19, porcine coronaviruses have become a research hotspot. porcine epidemic diarrhea virus (PEDV), Transmissible Gastroenteritis Virus (TGEV), and Porcine Deltacoronavirus (PDCoV) mentioned in this study mainly cause diarrhea in pigs. These viruses cause significant economic losses and pose a potential public health threat. In this study, specific primers and probes were designed according to the M gene of PEDV, the S gene of TGEV, and the M gene of PDCoV, respectively, and TaqMan probe-based multiplex real-time quantitative reverse transcription-polymerase chain reaction (qRT-PCR) was developed for the simultaneous detection of PEDV, TGEV, and PDCoV. This method has high sensitivity and specificity, and the detection limit of each virus can reach 2.95 × 100 copies/µl. An assay of 160 clinical samples from pigs with diarrhea showed that the positive rates of PEDV, TGEV, and PDCoV were 38.13, 1.88, and 5.00%; the coinfection rates of PEDV+TGEV, PEDV+PDCoV, TGEV+PDCoV, PEDV+TGEV+PDCoV were 1.25, 1.25, 0, 0.63%, respectively. The positive coincidence rates of the multiplex qRT-PCR and single-reaction qRT-PCR were 100%. This method is of great significance for clinical monitoring of the porcine enteric diarrhea virus and helps reduce the loss of the breeding industry and control the spread of the disease.
RESUMO
Milk is an important source of nutrients during pregnancy. Previous studies have consistently shown that oxidation in milk and dairy products can induce oxidative stress, inflammation, and fibrosis in the liver and kidney. However, the mechanism underlying these effects remains largely unexplored. This study aimed to investigate the effects of oxidized milk on fecal metabolism and liver and kidney function of offspring mice. Oxidative modification of milk was performed using H2O2-Cu or heating, causing varying degrees of oxidative damage. Kunming female mice were fed with a H2O2-Cu, heat, or normal control diet until their offspring were 3 weeks old. Feces were collected for the metabolomics study based on mass spectrometry. Forty-two potentially significant metabolic biomarkers were screened, and each group's relative intensity was compared. The results showed that oxidized milk mainly regulated isoleucine metabolism, proline metabolism, and tricarboxylic acid cycle. In addition, the histopathological analysis showed accumulation of protein and lipid oxidation products in the liver and kidney tissues after intake of oxidized milk, which induced oxidative stress, increased the levels of inflammatory factors, and significantly increased the expression of genes and proteins involved in inflammatory pathways. The above results suggest that intake of oxidized milk during gestation may increase the risk of liver and kidney injury in male offspring by interfering with amino acid and energy metabolism, highlighting the potential health risks of oxidized milk in humans.
Assuntos
Peróxido de Hidrogênio , Leite , Animais , Dieta , Feminino , Peróxido de Hidrogênio/metabolismo , Lactação , Fígado/metabolismo , Masculino , Metabolômica , Camundongos , Oxirredução , GravidezRESUMO
Porcine enteric coronaviruses are pathogens that cause viral diarrhea in pigs and are widely prevalent worldwide. Moreover, studies have shown that some porcine enteric coronaviruses can infect humans and poultry. In order to effectively monitor these viruses, it is necessary to establish a multiple detection method to understand their prevalence and conduct in-depth research. Common porcine enteric coronaviruses include Porcine epidemic diarrhea virus (PEDV), Porcine transmissible gastroenteritis virus (TGEV), Porcine delta coronavirus (PDCoV), and Swine acute diarrhea syndrome coronavirus (SADS-CoV). Pigs infected with these viruses have the common clinical symptoms that are difficult to distinguish. A quadruplex RT-PCR (reverse transcription-polymerase chain reaction) method for the simultaneous detection of PEDV, PDCoV, TGEV and SADS-CoV was developed. Four pairs of specific primers were designed for the PEDV M gene, PDCoV N gene, TGEV S gene and SADS-CoV RdRp gene. Multiplex RT-PCR results showed that the target fragments of PDCoV, SADS-CoV, PEDV and TGEV could be amplified by this method. and the specific fragments with sizes of 250 bp, 368 bp, 616 bp and 801 bp were amplified, respectively. This method cannot amplify any fragment of nucleic acids of Seneca Valley virus (SVV), Porcine Reproductive and Respiratory Syndrome Virus (PRRSV) and Atypical Porcine Pestivirus (APPV), and has good specificity. The lowest detection limits of PDCoV, PEDV, TGEV and SADS-CoV were 5.66 × 105 copies/µL, 6.48 × 105 copies/µL, 8.54 × 105 copies/µL and 7.79 × 106 copies/µL, respectively. A total of 94 samples were collected from pig farms were analyzed using this method. There were 15 positive samples for PEDV, 3 positive samples for mixed infection of PEDV and PDCoV, 2 positive samples for mixed infection of PEDV and TGEV, and 1 positive sample for mixed infection of PEDV, TGEV, and PDCoV. Multiplex RT-PCR method could detect four intestinal coronaviruses (PEDV, PDCoV, TGEV, and SADS-CoV) in pigs efficiently, cheaply and accurately, which can be used for clinical large-scale epidemiological investigation and diagnosis.
RESUMO
The objective was to evaluate effects of niacin on the intestinal epithelial barrier, intestinal immunity, and microbial community in weaned piglets challenged by Porcine Deltacoronavirus (PDCoV). In this study, fifteen weaned piglets were randomly assigned to 1 of 3 groups, (1) control group, normal diet; (2) PDCoV group, infected with 1 × 107 TCID50 of the PDCoV CHN-HN-17 strain by oral administration; (3) NA + PDCoV group, infected with 1 × 107 TCID50 of the PDCoV CHN-HN-17 strain by oral administration following administration of 40 mg of niacin for three days. The results showed that PDCoV infection induced diarrhea and other clinical symptoms with intestinal villi shedding and atrophy in weaned piglets. Niacin alleviated the symptoms of diarrhea and intestinal damage of PDCoV-infected weaned piglets. Additionally, PDCoV increased (P < 0.05) the mRNA expression of tight junction proteins [zonula occludens-1 (ZO-1) and Claudin] and antimicrobial peptides [porcine ß defensin 1 (pBD1), pBD2, proline-arginine rich 39-amino acid peptide (PR39) and protegrin 1-5 (PG1-5) in the jejunum and ileum of weaned piglets, while niacin increased (P < 0.05) the expression of PG1-5 compared with PDCoV. PDCoV increased (P < 0.05) the contents of serum interleukin-1ß (IL-1ß), IL-8 and intestinal IL-8, and up-regulated the mRNA expression of tumor necrosis factor-α (TNF-α), IL-1ß, IL-6, IL-10, IL-12, and IL-18 in ileum of weaned piglets compared with control. However, niacin decreased (P < 0.05) the contents of serum IL-1ß, IL-6 and intestinal IL-10 and IL-8, and also reduced (P < 0.05) the mRNA expression of ileal TNF-α, IL-10 and IL-12 in the PDCoV-infected piglets. Compared with control, PDCoV up-regulated (P < 0.05) the mRNA expression of key genes related to innate immune and antiviral molecules [toll-like receptor 4 (TLR4), NOD1, NOD2, DDX58, CCL2, STAT2, Mx1, IFN-γ, and protein kinase R (PKR) in the ileum of weaned piglets. Niacin decreased (P < 0.05) the mRNA expression of NOD1, NOD2, STAT2, IFN-γ, and PKR in PDCoV-infected weaned piglets. Moreover, the mRNA expression of IL-6 decreased (P < 0.05) and 2'-5'-oligoadenylate synthetase (OAS), IFN-α, and PKR increased (P < 0.05) in PDCoV-infected IPEC-J2 cells treated with niacin in vitro. Furthermore, niacin decreased (P < 0.05) the elevation of protein expression including inducible NOS (iNOS), nuclear factor-κB (NF-κB p65), inhibitor kappa B (IKKß), histone deacetylase [Sirtuin 1 (SIRT1) and histone deacetylase 7 (HDAC7) and phosphorylation of histone H3 at serine s10 (pH3s10) in the ileum of PDCoV-infected piglets, and increased (P < 0.05) the expression of G protein-coupled receptor (GPR109A). PDCoV disrupted the composition and structure of microflora in the colon of weaned piglets, and reduced the relative abundance of the beneficial bacteria Spirobacterium, but niacin could improve the intestinal microbial flora of the PDCoV-infected piglets associated with increasing the relative abundance of Lactobacillus. Overall, niacin could alleviate diarrhea, intestinal barrier damages, intestinal immune response and colonic microflora disfunction in PDCoV-infected weaned piglets.
Assuntos
Microbiota , Niacina , Animais , Diarreia/metabolismo , Histona Desacetilases/metabolismo , Interleucina-10/metabolismo , Interleucina-12/metabolismo , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Mucosa Intestinal/metabolismo , Niacina/farmacologia , RNA Mensageiro/metabolismo , Suínos , Fator de Necrose Tumoral alfa/metabolismoRESUMO
From 2003 onwards, three pandemics have been caused by coronaviruses: severe acute respiratory syndrome coronavirus (SARS-CoV); middle east respiratory syndrome coronavirus (MERS-CoV); and, most recently, SARS-CoV-2. Notably, all three were transmitted from animals to humans. This would suggest that animals are potential sources of epidemics for humans. The emerging porcine delta-coronavirus was reported to infect children. This is a red flag that marks the ability of PDCoV to break barriers of cross-species transmission to humans. Therefore, we conducted molecular genetic analysis of global clade PDCoV to characterize spatiotemporal patterns of viral diffusion and genetic diversity. PDCoV was classified into three major lineages, according to distribution and phylogenetic analysis of PDCoV. It can be inferred based on the analysis results of the currently known PDCoV strains that PDCoV might originate in Asia. We also selected six special spike amino acid sequences to align and analyze to find seven significant mutation sites. The accumulation of these mutations may enhance dynamic movements, accelerating spike protein membrane fusion events and transmission. Altogether, our study offers a novel insight into the diversification, evolution, and interspecies transmission and origin of PDCoV and emphasizes the need to study the zoonotic potential of the PDCoV and comprehensive surveillance and enhanced biosecurity precautions for PDCoV.
Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Animais , COVID-19/veterinária , Humanos , Filogenia , Filogeografia , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , SuínosRESUMO
In this study, a specific and simple method based on the dual priming oligonucleotide (DPO) system was developed to simultaneously detect transmissible gastroenteritis virus (TGEV), porcine epidemic diarrhea virus (PEDV), porcine rotavirus A (PRV-A), porcine delta coronavirus (PDCoV), and swine acute diarrhea syndrome coronavirus (SADS-CoV), associated with the major enteric RNA viruses in pigs. The DPO system-based multiplex RT-PCR method simplified the primer design and did not require optimization of the annealing temperature. Specificity analysis revealed that the method could specifically detect TGEV, PEDV, PRV-A, PDCoV, and SADS-CoV without any cross-amplification of other circulating swine viruses. The limit of detection of the method was as low as 103-104 copies/µL plasmid of each virus. The method also had good repeatability, and obvious results were seen in three repeat experiments with an interval of 45 days. This optimized multiplex RT-PCR method was used to evaluate 181 clinical swine samples that were collected from four provinces of China between September 2016 and August 2018. The results showed that the positive detection rates of PEDV, PDCoV, SADS-CoV, PRV-A, and TGEV were 30.94% (56/181), 17.67% (32/181), 11.6% (21/181), 9.39% (17/181), and 0.55% (1/181), respectively. Mixed infection of two or more viruses was also common. The DPO system-based multiplex RT-PCR could be a useful tool for detecting enteric virus infections. This method has the advantages of easy operation, low cost, high detection efficiency, and short running time for early diagnosis in clinical cases.
RESUMO
Graphene oxide (GO) has excellent physicochemical properties and is used in multiple areas. However, the potential toxicity and environmental problems associated with GO increase its risk to the ecological system. In this study, cement was employed as a coagulant to eliminate GO from aqueous solutions. The effects of the cement dosage, the contact time, and the concentration and volume of the aqueous GO solution on the GO coagulation capacity were investigated in detail. The results showed that the dosage of cement had a significant effect on the coagulation process, and coagulation equilibrium was achieved in less than 1 h. Compared to coagulants used to remove GO from water in other reports, cement exhibited an ultrahigh coagulation capacity of approximately 5981.2 mg/g with 0.4 mg/mL GO solution. The kinetic analysis showed that the GO removal behavior could be described by a pseudo second-order model. The in-depth mechanism of GO coagulation using cement included Ca2+-induced coagulation of GO and adsorption by the hydrated product of cement paste. The present study revealed that cement could be a very cheap and promising material for the efficient elimination of GO from aqueous solutions.
RESUMO
The potential extensive application of graphene oxide (GO) in various fields results in the possibility of its release into the natural environment with negative impacts on humans and the ecosystem. The UV-induced removal behavior of aqueous GO was evaluated in this study, and the effect of various parameters (including initial GO concentration, initial solution pH and co-existing ions) on removal rate of GO were investigated in detail. The results showed that UV-light induced a maximum removal rate of GO of 99.1% after 32 h irradiation without any additives, and that the photo-induced removal process in all cases fitted well with pseudo-first-order kinetics. Under optimal conditions, GO was completely removed, with initial GO concentrations of 10 mg/L while adjusting solution pH to 3 or adding Ca2+-containing salt. The GO and photoreduced graphene oxide (prGO) were characterized using High-resolution Transmission Microscopy (HRTEM), X-ray Photoelectron Spectroscopy (XPS), and Fourier-transform Infrared Spectroscopy (FT-IR). The radical species trapping experiments and Electron Spin Resonance (ESR) tests indicated that self-reduction of GO upon UV-light exposure could be achieved via photogenerated electrons from a GO semiconductor. Further mechanism study showed that the high efficiency of UV-induced GO removal came from UV-induced photoreduction, and pH-induced or cation-induced coagulation. This study provided a green and effective method to remove GO from aqueous solutions.
RESUMO
Three dimensional (3D) ZnO/ZnAl2O4 nanocomposites (ZnnAl-MMO) were synthesized by a simple urea-assisted hydrothermal process and subsequent high-temperature calcination. The as-prepared samples and their precursors were characterized by X-ray diffraction (XRD), Scanning electron microscopy (SEM), Transmission electron microscopy (TEM), UV-Vis diffuse reflectance spectroscopy (DRS), and Photoluminescence spectra (PL). It was observed that the morphology of ZnnAl-MMO nanocomposites could be tuned from cubic aggregates, hierarchically flower-like spheres to porous microspheres by simply changing the molar ratio of metal cations of the starting reaction mixtures. The photocatalytic performance of ZnO/ZnAl2O4 nanocomposites in the photoreduction of aqueous Cr(VI) indicated that the as-prepared 3D hierarchical sphere-like ZnnAl-MMO nanocomposite showed excellent photocatalytic activity of Cr(VI) reduction under UV light irradiation. The results indicated that the maximum removal percentage of aqueous Cr(VI) was 98% within four hours at 10 mg/L initial concentration of Cr(VI), owing to the effective charge separation and diversion of photogenerated carriers across the heterojunction interface of the composite. Our study put forward a facile method to fabricate hierarchical ZnO/ZnAl2O4 composites with potential applications for wastewater treatment.
RESUMO
OBJECTIVE: To investigate clinical effect of transverse tibial bone transport micro vessels regeneration technology combined with vacuum drainage in treating diabetic foot ulcer. METHODS: From November 2015 and December 2016, clinical data of 19 diabetic foot ulcer patients treated with transverse tibial bone transport micro vessels regeneration technology combined with vacuum drainage were retrospective analyzed, including 15 males and 4 females aged from 42 to 82 years old with an average of (64.57±7.14) years old;the courses of diabetic ranged was (14.62±6.19) years;12 cases on the left side and 7 cases on the right side;the area of ulcer ranged from 2 cm×3 cm to 8 cm×6 cm. All patients were stage D according to Texas classification, 3 cases were grade 2, 10 cases were grade 3 and 6 cases were grade 4. Ankle-brachial index and Michigan Neuropathy Screening Instrument (MNSI) were used to evaluate recovery of peripheral vessel and nerve before and after operation, the result of angiography and vascular ultrasound were also compared after operation. RESULTS: Seventeen of 19 patients were followed up from 3 to 13 months with an average of 6.9 months. Seventeen patients' surface wound were healed. Ankle-brachial index was increased from (0.51±0.20) before operation to (0.93±0.18) at 3 months after operation, and had significant difference(t=13.63, P=0.000);MNSI was increased from (4.06±1.36) before operation to(5.76±1.44) at 3 months after operation, and differences were statistically significant (t=7.31, P=0.000). Postoperative angiography and vascular ultrasound showed satisfied regeneration of micro-vessel and affected foot achieved normal movement and daily life. CONCLUSIONS: Transverse tibial bone transport micro vessels regeneration technology could reconstruct micro-vessel under lower affected limb, promote recovery of peripheral vessel and nerve, while with vacuum drainage could promote wound healing, has advantages of simple operation, obvious clinical effect, and high success rate of limb-salvage, and is one of ideal treatment for diabetic foot ulcer.