Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Infect Immun ; 91(7): e0015523, 2023 07 18.
Artigo em Inglês | MEDLINE | ID: mdl-37338365

RESUMO

Macrophage (MΦ) infection models are important tools for studying host-mycobacterial interactions. Although the multiplicity of infection (MOI) is an important experimental variable, the selection of MOI in mycobacterial infection experiments is largely empirical, without reference to solid experimental data. To provide relevant data, we used RNA-seq to analyze the gene expression profiles of MΦs 4 or 24 h after infection with Mycobacterium marinum (M. m) at MOIs ranging from 0.1 to 50. Analysis of differentially expressed genes (DEGs) showed that different MOIs are linked to distinct transcriptomic changes and only 10% of DEGs were shared by MΦ infected at all MOIs. KEGG pathway enrichment analysis revealed that type I interferon (IFN)-related pathways were inoculant dose-dependent and enriched only at high MOIs, whereas TNF pathways were inoculant dose-independent and enriched at all MOIs. Protein-protein interaction (PPI) network alignment showed that different MOIs had distinct key node genes. By fluorescence-activated cell sorting and follow-up RT-PCR analysis, we could separate infected MΦs from uninfected MΦs and found phagocytosis of mycobacteria to be the determinant factor for type I IFN production. The distinct transcriptional regulation of RAW264.7 MΦ genes at different MOIs was also seen with Mycobacterium tuberculosis (M.tb) infections and primary MΦ infection models. In summary, transcriptional profiling of mycobacterial infected MΦs revealed that different MOIs activate distinct immune pathways and the type I IFN pathway is activated only at high MOIs. This study should provide guidance for selecting the MOI most appropriate for different research questions.


Assuntos
Interferon Tipo I , Mycobacterium tuberculosis , Transcriptoma , Transdução de Sinais , Macrófagos , Mycobacterium tuberculosis/genética , Interferon Tipo I/genética
2.
WIREs Mech Dis ; : e1643, 2024 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-38351551

RESUMO

Nearly one-fourth of the global population is infected by Mycobacterium tuberculosis (Mtb), and approximately 90%-95% remain asymptomatic as latent tuberculosis infection (LTBI), an estimated 5%-10% of those with latent infections will eventually progress to active tuberculosis (ATB). Although it is widely accepted that LTBI transitioning to ATB results from a disruption of host immune balance and a weakening of protective immune responses, the exact underlying immunological mechanisms that promote this conversion are not well characterized. Thus, it is difficult to accurately predict tuberculosis (TB) progression in advance, leaving the LTBI population as a significant threat to TB prevention and control. This article systematically explores three aspects related to the immunoregulatory mechanisms and translational research about LTBI: (1) the distinct immunocytological characteristics of LTBI and ATB, (2) LTBI diagnostic markers discovery related to host anti-TB immunity and metabolic pathways, and (3) vaccine development focus on LTBI. This article is categorized under: Infectious Diseases > Molecular and Cellular Physiology Infectious Diseases > Genetics/Genomics/Epigenetics Immune System Diseases > Genetics/Genomics/Epigenetics.

3.
Sci Adv ; 10(14): eadk8093, 2024 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-38578989

RESUMO

Trained immunity is one of the mechanisms by which BCG vaccination confers persistent nonspecific protection against diverse diseases. Genomic differences between the different BCG vaccine strains that are in global use could result in variable protection against tuberculosis and therapeutic effects on bladder cancer. In this study, we found that four representative BCG strains (BCG-Russia, BCG-Sweden, BCG-China, and BCG-Pasteur) covering all four genetic clusters differed in their ability to induce trained immunity and nonspecific protection. The trained immunity induced by BCG was associated with the Akt-mTOR-HIF1α axis, glycolysis, and NOD-like receptor signaling pathway. Multi-omics analysis (epigenomics, transcriptomics, and metabolomics) showed that linoleic acid metabolism was correlated with the trained immunity-inducing capacity of different BCG strains. Linoleic acid participated in the induction of trained immunity and could act as adjuvants to enhance BCG-induced trained immunity, revealing a trained immunity-inducing signaling pathway that could be used in the adjuvant development.


Assuntos
Vacina BCG , Tuberculose , Humanos , Ácido Linoleico , Imunidade Treinada , Multiômica , Adjuvantes Imunológicos/farmacologia
4.
J Infect ; 87(5): 373-384, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37690670

RESUMO

Lung inflammation indicated by 18F-labeled fluorodeoxyglucose (FDG) in patients with tuberculosis is associated with disease severity and relapse risk upon treatment completion. We revealed the heterogeneity and intercellular crosstalk in lung tissues with 18F-FDG avidity and adjacent uninvolved tissues from 6 tuberculosis patients by single-cell RNA-sequencing. Tuberculous lungs had an influx of regulatory T cells (Treg), exhausted CD8 T cells, immunosuppressive myeloid cells, conventional DC, plasmacytoid DC, and neutrophils. Immune cells in inflamed lungs showed general up-regulation of ATP synthesis and interferon-mediated signaling. Immunosuppressive myeloid and Treg cells strongly displayed transcriptions of genes related to tuberculosis disease progression. Intensive crosstalk between IL4I1-expressing myeloid cells and Treg cells involving chemokines, costimulatory molecules, and immune checkpoints, some of which are specific in 18F-FDG-avid lungs, were found. Our analysis provides insights into the transcriptomic heterogeneity and cellular crosstalk in pulmonary tuberculosis and guides unveiling cellular and molecular targets for tuberculosis therapy.

5.
Front Immunol ; 13: 893611, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35693809

RESUMO

The NOD-like receptors (NLRs) have been shown to be involved in infection and autoinflammatory disease. Previously, we identified a zebrafish NLR, nlrc3-like, required for macrophage homeostasis in the brain under physiological conditions. Here, we found that a deficiency of nlrc3-like leads to decreased bacterial burden at a very early stage of Mycobacterium marinum infection, along with increased production of pro-inflammatory cytokines, such as il-1ß and tnf-α. Interestingly, myeloid-lineage specific overexpression of nlrc3-like achieved the opposite effects, suggesting that the impact of nlrc3-like on the host anti-mycobacterial response is mainly due to its expression in the innate immune system. Fluorescence-activated cell sorting (FACS) and subsequent gene expression analysis demonstrated that inflammasome activation-related genes were upregulated in the infected macrophages of nlrc3-like deficient embryos. By disrupting asc, encoding apoptosis-associated speck-like protein containing a CARD, a key component for inflammasome activation, the bacterial burden increased in asc and nlrc3-like double deficient embryos compared with nlrc3-like single deficient embryos, implying the involvement of inflammasome activation in infection control. We also found extensive neutrophil infiltration in the nlrc3-like deficient larvae during infection, which was associated with comparable bacterial burden but increased tissue damage and death at a later stage that could be alleviated by administration of dexamethasone. Our findings uncovered an important role of nlrc3-like in the negative regulation of macrophage inflammasome activation and neutrophil infiltration during mycobacterial infection. This highlights the importance of a balanced innate immune response during mycobacterial infection and provides a potential molecular basis to explain how anti-inflammatory drugs can improve treatment outcomes in TB patients whose infection is accompanied by a hyperinflammatory response.


Assuntos
Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Infecções por Mycobacterium não Tuberculosas , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra , Animais , Humanos , Imunidade Inata , Inflamassomos/metabolismo , Peptídeos e Proteínas de Sinalização Intercelular/genética , Proteínas NLR/metabolismo , Peixe-Zebra/metabolismo
6.
Front Oncol ; 12: 836087, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35860571

RESUMO

Background: Chronic inflammation contributes to approximately 20% of cancers; the underlying mechanisms are still elusive. Here, using an animal model of colitis to colon-cancerous transformation, we demonstrated that endoplasmic reticulum (ER) stress couples with metabolic reprogramming to promote a malignant transformation of chronic inflammation. Methods: The animal model for chronic colitis to colon-cancerous transformation was established in C57BL/6N mice by azoxymethane (AOM) and dextran sodium sulfate (DSS) treatments. The differential proteins in control and AOM/DSS-treated colon mucosa were determined using proteomic analysis; the kinetics of metabolic modifications were monitored by mitochondrial oxygen flux, extracellular acidification, and targeted metabolomics; the molecule linker between ER stress and metabolic modifications were identified by coimmunoprecipitation, KEGG pathway analysis, and the subcutaneous tumor model using gene-specific knockdown colon cancer cells. Tissue array analysis were used to evaluate the differential protein in cancer and cancer-adjacent tissues. Results: AOM/DSS treatment induced 38 tumors in 10 mice at the 14th week with the mean tumor size 9.35 ± 3.87 mm2, which was significantly decreased to 5.85 ± 0.95 mm2 by the ER stress inhibitor 4-phenylbutyric acid (4PBA). Seven differential proteins were determined from control (1,067 ± 48) and AOM/DSS-treated mucosa (1,077 ± 59); the level of ER protein PDIA2 (protein disulfide isomerase-associated 2) was increased over 7-fold in response to AOM/DSS treatment. PDIA2 interacted with 420 proteins that were involved in 8 signaling pathways, in particular with 53 proteins in metabolic pathways. PDIA2 translocated from ER to mitochondria and interacted with the components of complexes I and II to inhibit oxophosphorylation but increase glycolysis. Knockdown PDIA2 in colon cancer cells restored the metabolic imbalance and significantly repressed tumor growth in the xenograft animal model. 4PBA therapy inhibited the AOM/DSS-mediated overexpression of PDIA2 and metabolic modifications and suppressed colon cancer growth. In clinic, PDIA2 was overexpressed in colon cancer tissues rather than cancer-adjacent tissues and was related with the late stages and lymph node metastasis of colon cancer. Conclusions: Persistent ER stress reprograms the metabolism to promote the malignant transformation of chronic colitis; PDIA2 serves as a molecule linker between ER stress and metabolic reprogramming. The inhibition of ER stress restores metabolic homeostasis and attenuates the cancerous transformation of chronic inflammation.

7.
Cell Rep ; 40(4): 111144, 2022 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-35905725

RESUMO

Influx of eosinophils into the lungs is typically associated with type II responses during allergy and fungal and parasitic infections. However, we previously reported that eosinophils accumulate in lung lesions during type I inflammatory responses to Mycobacterium tuberculosis (Mtb) in humans, macaques, and mice, in which they support host resistance. Here we show eosinophils migrate into the lungs of macaques and mice as early as one week after Mtb exposure. In mice this influx is CCR3 independent and instead requires cell-intrinsic expression of the oxysterol receptor GPR183, which is highly expressed on human and macaque eosinophils. Murine eosinophils interact directly with bacilli-laden alveolar macrophages, which upregulate the oxysterol-synthesizing enzyme Ch25h, and eosinophil recruitment is impaired in Ch25h-deficient mice. Our findings show that eosinophils are among the earliest cells from circulation to sense and respond to Mtb infection of alveolar macrophages and reveal a role for GPR183 in the migration of eosinophils into lung tissue.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Animais , Eosinófilos/metabolismo , Humanos , Pulmão/patologia , Macrófagos Alveolares , Camundongos , Mycobacterium tuberculosis/fisiologia , Receptores Acoplados a Proteínas G/metabolismo , Tuberculose/patologia
8.
Aging (Albany NY) ; 13(6): 8228-8247, 2021 03 03.
Artigo em Inglês | MEDLINE | ID: mdl-33686954

RESUMO

Accurate diagnosis of complete inactivation of tuberculosis lesions is still a challenge with respect to sputum-negative tuberculosis. RNA-sequencing was conducted to uncover potential lncRNA indicators of metabolic activity in tuberculosis lesions. Lung tissues with high metabolic activity and low metabolic activity demonstrated by fluorine-18-fluorodeoxyglucose positron emission tomography/computed tomography were collected from five sputum-negative tuberculosis patients for RNA-sequencing. Differentially-expressed mRNAs and lncRNAs were identified. Their correlations were evaluated to construct lncRNA-mRNA co-expression network, in which lncRNAs and mRNAs with high degrees were confirmed by quantitative real-time PCR using samples collected from 11 patients. Prediction efficiencies of lncRNA indicators were assessed by receiver operating characteristic curve analysis. Bioinformatics analysis was performed for potential lncRNAs. 386 mRNAs and 44 lncRNAs were identified to be differentially expressed. Differentially-expressed mRNAs in lncRNA-mRNA co-expression network were significantly associated with fibrillar collagen, platelet-derived growth factor binding, and leukocyte migration involved in inflammatory response. Seven mRNAs (C1QB, CD68, CCL5, CCL19, MMP7, HLA-DMB, and CYBB) and two lncRNAs (ENST00000429730.1 and MSTRG.93125.4) were validated to be significantly up-regulated. The area under the curve of ENST00000429730.1 and MSTRG.93125.4 was 0.750 and 0.813, respectively. Two lncRNAs ENST00000429730.1 and MSTRG.93125.4 might be considered as potential indicators of metabolic activity in tuberculosis lesions for sputum-negative tuberculosis.


Assuntos
Biomarcadores/análise , RNA Longo não Codificante/análise , Tuberculose Pulmonar/diagnóstico , Tuberculose Pulmonar/metabolismo , Adulto , Feminino , Humanos , Masculino , Tomografia por Emissão de Pósitrons combinada à Tomografia Computadorizada , Adulto Jovem
9.
PLoS One ; 15(7): e0235776, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32645059

RESUMO

Macrophages are key phagocytic cells and play an important role in eliminating external microorganisms and endogenous danger signals. Dysregulation in macrophage functions have been reported in patients with asthma. Zinc homeostasis is critical in maintaining macrophage functions. The solute carrier (SLC) protein SLC39A7, a Zn2+ importer, has recently been linked to asthma. However, the roles of SLC39A7 in macrophage phagocytosis are not well understood. Here we found that phagocytosis efficiency was significantly decreased in SLC39A7-knockdown THP-1 cells, however the phagocytosis capability could be reversed with zinc supplementation. SLC39A7 deficiency skewed macrophages towards alternative activation, as indicated by increased expression of M2 activation marker CD206 and decreased expression of M1 activation marker NOS2. Consistent to this result, SLC39A7-knockdown cells produced reduced amounts of proinflammatory cytokines TNF- and IL-6. Furthermore, the mRNA level of receptor Clec4e previously known to be involved in phagocytosis of BCG was significantly reduced in SLC39A7 knockdown cells. Importantly, all these defects due to SLC39A7 deficiency could be reversed by zinc supplementation. Thus, zinc transporter SLC39A7 provide support for phagocytosis and classical macrophage activation.


Assuntos
Proteínas de Transporte de Cátions/imunologia , Ativação de Macrófagos , Fagocitose , Zinco/deficiência , Linhagem Celular , Humanos , Macrófagos/imunologia , Zinco/imunologia
10.
J Vis Exp ; (143)2019 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-31929505

RESUMO

Zebrafish is an excellent model organism for studying innate immune cell behavior due to its transparent nature and reliance solely on its innate immune system during early development. The Zebrafish Mycobacterium marinum (M. marinum) infection model has been well-established in studying host immune response against mycobacterial infection. It has been suggested that different macrophage cell death types will lead to the diverse outcomes of mycobacterial infection. Here we describe a protocol using intravital microscopy to observe macrophage cell death in zebrafish embryos following M. marinum infection. Zebrafish transgenic lines that specifically label macrophages and neutrophils are infected via intramuscular microinjection of fluorescently labeled M. marinum in either the midbrain or the trunk. Infected zebrafish embryos are subsequently mounted on low melting agarose and observed by confocal microscopy in X-Y-Z-T dimensions. Because long-term live imaging requires using low laser power to avoid photobleaching and phototoxicity, a strongly expressing transgenic is highly recommended. This protocol facilitates the visualization of the dynamic processes in vivo, including immune cell migration, host pathogen interaction, and cell death.


Assuntos
Morte Celular , Embrião não Mamífero/imunologia , Embrião não Mamífero/microbiologia , Macrófagos/citologia , Infecções por Mycobacterium não Tuberculosas/imunologia , Mycobacterium marinum/fisiologia , Peixe-Zebra/embriologia , Animais , Movimento Celular , Interações Hospedeiro-Patógeno/imunologia , Imunidade Inata , Macrófagos/imunologia , Neutrófilos/citologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA