Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Materials (Basel) ; 11(11)2018 Nov 13.
Artigo em Inglês | MEDLINE | ID: mdl-30428577

RESUMO

Wood auto-hydrolysates (WAH) are obtained in the pulping process by the hydrothermal extraction, which contains lots of hemicelluloses and slight lignin. WAH and chitosan (CS) were introduced into this study to construct WAH-based films by the casting method. The FT-IR results revealed the crosslinking interaction between WAH and CS due to the Millard reaction. The morphology, transmittance, thermal properties and mechanical properties of composite WAH/CS films were investigated. As the results showed, the tensile strength, light transmittances and thermal stability of the WAH-based composite films increased with the increment of WAH/CS content ratio. In addition, the results of oxygen transfer rate (OTR) and water vapor permeability (WVP) suggested that the OTR and WVP values of the films decreased due to the addition of CS. The maximum value of tensile strengths of the composite films achieved 71.2 MPa and the OTR of the films was low as 0.16 cm³·µm·m-2·24 h-1·kPa-1, these properties are better than those of other hemicelluloses composite films. These results suggested that the barrier composite films based on WAH and CS will become attractive in the food packaging application for great mechanical properties, good transmittance and low oxygen transfer rate.

2.
Sci Rep ; 7: 41075, 2017 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-28112259

RESUMO

Biobased nanocomposite films for food packaging with high mechanical strength and good oxygen-barrier performance were developed using a hot-water wood extract (HWE). In this work, a facile approach to produce HWE/montmorillonite (MMT) based nanocomposite films with excellent physical properties is described. The focus of this study was to determine the effects of the MMT content on the structure and mechanical properties of nanocomposites and the effects of carboxymethyl cellulose (CMC) on the physical properties of the HWE-MMT films. The experimental results suggested that the intercalation of HWE and CMC in montmorillonite could produce compact, robust films with a nacre-like structure and multifunctional characteristics. This results of this study showed that the mechanical properties of the film designated FCMC0.05 (91.5 MPa) were dramatically enhanced because the proportion of HWE, MMT and CMC was 1:1.5:0.05. In addition, the optimized films exhibited an oxygen permeability below 2.0 cm3 µm/day·m2·kPa, as well as good thermal stability due to the small amount of CMC. These results provide a comprehensive understanding for further development of high-performance nanocomposites which are based on natural polymers (HWE) and assembled layered clays (MMT). These films offer great potential in the field of sustainable packaging.

3.
Sci Rep ; 6: 33603, 2016 09 16.
Artigo em Inglês | MEDLINE | ID: mdl-27634095

RESUMO

Hemicelluloses are widely used to prepare gel materials because of their renewability, biodegradability, and biocompatibility. Here, molecular chain extension of hemicelluloses was obtained in a two-step process. Composite hydrogels were prepared via free radical graft copolymerization of crosslinked quaternized hemicelluloses (CQH) and acrylic acid (AA) in the presence of crosslinking agent N,N'-methylenebisacrylamide (MBA). This chain extension strategy significantly improved the mechanical performance of the resulting hydrogels. The crosslinking density, compression modulus, and swelling capacities of hydrogels were tuned by changing the AA/CQH and MBA/CQH contents. Moreover, the biocompatibility test suggests that the hemicelluloses-based hydrogels exhibited no toxicity to cells and allowed cell growth. Taken together, these properties demonstrated that the composite hydrogels have potential applications in the fields of water absorbents, cell culture, and other functional biomaterials.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA