Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 66
Filtrar
1.
Nano Lett ; 23(5): 2056-2064, 2023 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-36695738

RESUMO

The phenotype of tumor-associated macrophages plays an important role in their function of regulating the tumor immune microenvironment. The M1-phenotype macrophages display tumor-killing and immune activating functions. Here we show that the tobacco mosaic virus (TMV), a rod-like plant virus, can polarize macrophages to an M1 phenotype and shape a tumor-suppressive microenvironment. RAW 264.7 cells and bone marrow derived-macrophages (BMDMs) can recognize TMV via Toll-like receptor-4, and then the MAPK and NF-κB signaling pathways are activated, leading to the production of pro-inflammatory factors. Furthermore, the in vivo assessments on a subcutaneous co-injection tumor model show that the TMV-polarized BMDMs shape a tumor-suppressive microenvironment, resulting in remarkable delay of 4T1 tumor growth. Another in vivo assessment on an established tumor model indicates the high tumor-metastasis-inhibiting capacity of TMV-polarized BMDMs. This work suggests a role for this plant virus in macrophage-mediated therapeutic approaches and provides a strategy for tumor immunotherapy.


Assuntos
Vírus do Mosaico do Tabaco , Animais , Camundongos , Macrófagos , Imunoterapia , Células RAW 264.7 , Microambiente Tumoral
2.
Proc Natl Acad Sci U S A ; 116(47): 23437-23443, 2019 11 19.
Artigo em Inglês | MEDLINE | ID: mdl-31685638

RESUMO

Antibiotic resistance has become one of the major threats to global health. Photodynamic inactivation (PDI) develops little antibiotic resistance; thus, it becomes a promising strategy in the control of bacterial infection. During a PDI process, light-induced reactive oxygen species (ROS) damage the membrane components, leading to the membrane rupture and bacteria death. Due to the short half-life and reaction radius of ROS, achieving the cell-membrane intercalation of photosensitizers is a key challenge for PDI of bacteria. In this work, a tetraphenylethylene-based discrete organoplatinum(II) metallacycle (1) acts as a photosensitizer with aggregation-induced emission. It self-assembles with a transacting activator of transduction (TAT) peptide-decorated virus coat protein (2) through electrostatic interactions. This assembly (3) exhibits both ROS generation and strong membrane-intercalating ability, resulting in significantly enhanced PDI efficiency against bacteria. By intercalating in the bacterial cell membrane or entering the bacteria, assembly 3 decreases the survival rate of gram-negative Escherichia coli to nearly zero and that of gram-positive Staphylococcus aureus to ∼30% upon light irradiation. This study has wide implications from the generation of multifunctional nanomaterials to the control of bacterial infection, especially for gram-negative bacteria.


Assuntos
Ácidos Acíclicos/farmacologia , Antibacterianos/farmacologia , Proteínas do Capsídeo/farmacologia , Membrana Celular/efeitos dos fármacos , Escherichia coli/efeitos dos fármacos , Produtos do Gene tat/farmacologia , Compostos Organoplatínicos/farmacologia , Fármacos Fotossensibilizantes/farmacologia , Staphylococcus aureus/efeitos dos fármacos , Estilbenos/farmacologia , Ácidos Acíclicos/química , Espectroscopia de Ressonância de Spin Eletrônica , Escherichia coli/efeitos da radiação , Escherichia coli/ultraestrutura , Microscopia Eletrônica , Fotoquimioterapia/métodos , Espécies Reativas de Oxigênio , Staphylococcus aureus/efeitos da radiação , Staphylococcus aureus/ultraestrutura , Eletricidade Estática , Vírus do Mosaico do Tabaco
3.
Nano Lett ; 21(4): 1722-1728, 2021 02 24.
Artigo em Inglês | MEDLINE | ID: mdl-33528254

RESUMO

Gram-negative bacteria, which possess an impermeable outer membrane, are responsible for many untreatable infections. The lack of development of new relevant antibiotics for over 50 years has increased threats. Peptides are regarded as the most promising alternatives to antibiotics. However, since the activities of existing peptides are not yet comparable to those of current antibiotics, there is an urgent need to improve their antibacterial efficiencies. Herein, we conjugate peptides onto one-dimensional rod-like tobacco mosaic virus (TMV). The peptides on the obtained nanoparticles (peptide-TMV) are hundreds of times superior to free peptides in combating Gram-negative bacteria. Through morphology and gene detection of Escherichia coli, it was revealed that following peptide-TMV application, the high osmotic pressure related to membrane damage and the generated reactive oxygen species cause Escherichia coli's death. In addition, peptide-TMV causes a downregulation of biofilm-related genes, inhibiting biofilm formation. This work paves the way to combat Gram-negative bacteria-related infection.


Assuntos
Escherichia coli , Bactérias Gram-Negativas , Antibacterianos/farmacologia , Biofilmes , Escherichia coli/genética , Testes de Sensibilidade Microbiana , Peptídeos/farmacologia
4.
J Nanosci Nanotechnol ; 19(4): 2269-2275, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-30486980

RESUMO

Phenotype conversion of smooth muscle cells (SMCs) plays a key role in the formation of atherosclerosis. Understanding how SMCs respond to a micro/nano-topology and elucidating the cellular mechanism of phenotype conversion is critical to the atherosclerosis treatment. Herein, we prepared poly(ɛ-caprolactone) (PCL) spherulites with a radius more than 350 µm for the studying of radial microstructure influence on SMCs behaviors. We found that on the PCL spherulitic films, SMCs grew aligning the radial direction of PCL spherulites, overexpressed α-SMA gene than OPN gene, and preferred contractile phenotype. FAK signaling pathway and ROCK1 signaling pathway both contributed to the contractile phenotype maintenance of SMCs. This work illustrated the feasibility of spherulites in regulating SMCs behaviors, and elucidated the mechanism how SMCs respond to a radial micro/nano-topology. This research may provide theoretical basis for the atherosclerosis formation and treatment.


Assuntos
Caproatos , Miócitos de Músculo Liso , Cristalização , Lactonas , Fenótipo
5.
Nano Lett ; 18(9): 5453-5460, 2018 09 12.
Artigo em Inglês | MEDLINE | ID: mdl-30091612

RESUMO

Inspired by the high gene transfer efficiency of viral vectors and to avoid side effects, we present here a 1D rod-like gene-silencing vector based on a plant virus. By decorating the transacting activator of transduction (TAT) peptide on the exterior surface, the TAT-modified tobacco mosaic virus (TMV) achieves a tunable isoelectric point (from ∼3.5 to ∼9.6) depending on the TAT dose. In addition to enhanced cell internalization, this plant virus-based vector (TMV-TAT) acquired endo/lysosomal escape capacity without inducing lysosomal damage, resulting in both high efficiency and low cytotoxicity. By loading silencer green fluorescent protein (GFP) siRNA onto the TMV-TAT vector (siRNA@TMV-TAT) and interfering with GFP-expressing mouse epidermal stem cells (ESCs/GFP) in vitro, the proportion of GFP-positive cells could be knocked down to levels even lower than 15% at a concentration of ∼100% cell viability. Moreover, by interfering with GFP-expressing highly metastatic hepatocellular carcinoma (MHCC97-H/GFP) tumors in vivo, treatment with siRNA@TMV-TAT complexes for 10 days achieved a GFP-negative rate as high as 80.8%. This work combines the high efficiency of viral vectors and the safety of nonviral vectors and may provide a promising strategy for gene-silencing technology.


Assuntos
Peptídeos Penetradores de Células/química , Portadores de Fármacos/química , Nanopartículas/química , Interferência de RNA , RNA Interferente Pequeno/administração & dosagem , Vírus do Mosaico do Tabaco/química , Animais , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/terapia , Feminino , Proteínas de Fluorescência Verde/genética , Células HeLa , Humanos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/terapia , Camundongos Endogâmicos BALB C , Camundongos Nus , RNA Interferente Pequeno/genética , Terapêutica com RNAi
6.
Langmuir ; 33(38): 9866-9872, 2017 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-28849937

RESUMO

One-dimensional (1D) hybrid nanofibers with surface-deposited gold nanoparticles (AuNPs) have been fabricated by self-assembly of rod-like tobacco mosaic virus (TMV) with mussel-inspired polymerization of dopamine and in situ reduction of gold ion, providing a method for sensing the endocytic pathway of nanomaterial.


Assuntos
Nanofibras , Ouro , Indóis , Nanopartículas Metálicas , Polímeros , Vírus do Mosaico do Tabaco
7.
J Am Chem Soc ; 138(37): 12033-6, 2016 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-27608138

RESUMO

Here we report that the rod-like tobacco mosaic virus (TMV), having a negatively charged surface, can be assembled into three-dimensional micrometer-sized bundle-like superstructures via multiple electrostatic interactions with a positively charged molecular "glue", namely, a tetraphenylethylene (TPE)-based discrete organoplatinum(II) metallacycle (TPE-Pt-MC). Due to the nanoconfinement effect in the resultant TMV/TPE-Pt-MC complexes and the aggregation-induced emission (AIE) activity of the TPE units, these hierarchical architectures result in a dramatic fluorescence enhancement that not only provides evidence for the formation of novel metal-organic biohybrid materials but also represents an alternative to turn-on fluorescence. Moreover, the dissociation of these final constructs and subsequent release of individual virus have been achieved by disrupting the TPE-Pt-MC core using tetrabutylammonium bromide (TBAB). This strategy is also compatible with other protein-based nanoparticles such as bacteriophage M13 and ferritin, proving the generality of this approach. Hence, this research will open new routes for the fabrication of functional biohybrid materials involving metal-organic complexes and anisotropically shaped bionanoparticles.

8.
Soft Matter ; 12(3): 798-805, 2016 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-26531814

RESUMO

The current work reports an intriguing discovery of how the force exerted on protein complexes like filamentous viruses by the strong interchain repulsion of polymer brushes can induce subtle changes of the constituent subunits at the molecular scale. Such changes transform into the macroscopic rearrangement of the chiral ordering of the rodlike virus in three dimensions. For this, a straightforward "grafting-to" PEGylation method has been developed to densely graft a filamentous virus with poly(ethylene glycol) (PEG). The grafting density is so high that PEG is in the polymer brush regime, resulting in straight and thick rodlike particles with a thin viral backbone. Scission of the densely PEGylated viruses into fragments was observed due to the steric repulsion of the PEG brush, as facilitated by adsorption onto a mica surface. The high grafting density of PEG endows the virus with an isotropic-nematic (I-N) liquid crystal (LC) phase transition that is independent of the ionic strength and the densely PEGylated viruses enter into the nematic LC phase at much lower virus concentrations. Most importantly, while the intact virus and the one grafted with PEG of low grafting density can form a chiral nematic LC phase, the densely PEGylated viruses only form a pure nematic LC phase. This can be traced back to the secondary to tertiary structural change of the major coat protein of the virus, driven by the steric repulsion of the PEG brush. Quantitative parameters characterising the conformation of the grafted PEG derived from the grafting density or the I-N LC transition are elegantly consistent with the theoretical prediction.


Assuntos
Proteínas do Capsídeo/química , Cristais Líquidos/química , Polietilenoglicóis/química , Vírus/química , Adsorção , Silicatos de Alumínio/química , Proteínas do Capsídeo/ultraestrutura , Microscopia de Força Atômica , Modelos Moleculares , Transição de Fase , Propriedades de Superfície , Vírus/ultraestrutura
9.
Sensors (Basel) ; 16(8)2016 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-27483277

RESUMO

Mercury is an extremely toxic chemical pollutant of our environment. It has attracted the world's attention due to its high mobility and the ease with which it accumulates in organisms. Sensitive devices and methods specific for detecting mercury ions are, hence, in great need. Here, we have integrated a DNA strand displacement reaction with a whispering gallery mode (WGM) sensor for demonstrating the detection of Hg(2+) ions. Our approach relies on the displacement of a DNA hairpin structure, which forms after the binding of mercury ions to an aptamer DNA sequence. The strand displacement reaction of the DNA aptamer provides highly specific and quantitative means for determining the mercury ion concentration on a label-free WGM sensor platform. Our approach also shows the possibility for manipulating the kinetics of a strand displacement reaction with specific ionic species.


Assuntos
Técnicas Biossensoriais/métodos , DNA/química , Íons/isolamento & purificação , Mercúrio/isolamento & purificação , Sequência de Bases , Íons/química , Mercúrio/química
10.
Langmuir ; 30(29): 8938-44, 2014 Jul 29.
Artigo em Inglês | MEDLINE | ID: mdl-25014581

RESUMO

On the basis of terminal group electrostatic interactions (TGEI), a supra-amphiphile is formed between a homopolymer of polylactic acid with carboxyl group at one end (PLA-COOH) and hepta-6-hydrazyl-ß-cyclodextrin (HH-CD). The amphiphile can self-assemble into a micellar structure in aqueous solution. The outer surface of the micelle, which is composed of cyclodextrins, can be further modified via host-guest interactions. Considering the biocompatibility of the building blocks, the application of the micelles in a nanocarrier of anticancer drugs is further explored.


Assuntos
Portadores de Fármacos/química , Ácido Láctico/química , Polímeros/química , Tensoativos/química , beta-Ciclodextrinas/química , Antineoplásicos/química , Antineoplásicos/farmacologia , Transporte Biológico , Sobrevivência Celular/efeitos dos fármacos , Doxorrubicina/química , Doxorrubicina/farmacologia , Portadores de Fármacos/metabolismo , Composição de Medicamentos , Liberação Controlada de Fármacos , Células HeLa , Humanos , Micelas , Estrutura Molecular , Poliésteres , Soluções , Eletricidade Estática , Propriedades de Superfície , Água
11.
Int J Biol Macromol ; 278(Pt 3): 134896, 2024 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-39168206

RESUMO

Oxidative stress caused by excessive reactive oxygen species (ROS) accumulation significantly hinders wound healing in patients with diabetes. Scavenging ROS and reducing inflammation are crucial for rapid healing. In this work, a multi-responsive sodium hyaluronate (HA)/tannic acid (TA) hydrogel was developed based on boronate ester bonds. Sodium hyaluronate with 3-aminophenyl boronic acid modification (HA-APBA) was mixed and crosslinked with TA to form HA-APBA/TA hydrogels. These hydrogels are injectable, self-healing, and biocompatible. The HA-APBA/TA hydrogels could release free TA through the collapse of the structure at low pH, high H2O2 concentration, and high glucose concentration, thus possessing good ROS scavenging ability. In full-thickness skin wounds of db/db mice, the HA-APBA/TA hydrogels promoted wound healing, collagen deposition, and significant angiogenesis. Furthermore, they have been shown to effectively reduce the levels of inflammatory factors in wounds and lower the expression of CD86, a pro-inflammatory macrophage surface marker. This resulted in a more effective transition of wound healing from the inflammatory phase to the proliferative phase. This study provides an optional strategy for alleviating oxidative stress and controlling excessive inflammation, thereby promoting diabetic wound healing.


Assuntos
Ácido Hialurônico , Hidrogéis , Espécies Reativas de Oxigênio , Cicatrização , Ácido Hialurônico/química , Ácido Hialurônico/farmacologia , Hidrogéis/química , Hidrogéis/farmacologia , Animais , Cicatrização/efeitos dos fármacos , Camundongos , Espécies Reativas de Oxigênio/metabolismo , Sequestradores de Radicais Livres/farmacologia , Sequestradores de Radicais Livres/química , Diabetes Mellitus Experimental/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Polifenóis
12.
Adv Healthc Mater ; 13(17): e2303755, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38424475

RESUMO

Short-chain antifungal peptides (AFPs) inspired by histatin 5 have been designed to address the problem of antifungal drug resistance. These AFPs demonstrate remarkable antifungal activity, with a minimal inhibitory concentration as low as 2 µg mL-1. Notably, these AFPs display a strong preference for targeting fungi rather than bacteria and mammalian cells. This is achieved by binding the histidine-rich domains of the AFPs to the Ssa1/2 proteins in the fungal cell wall, as well as the reduced membrane-disrupting activity due to their low amphiphilicity. These peptides disrupt the nucleus and mitochondria once inside the cells, leading to reactive oxygen species production and cell damage. In a mouse model of vulvovaginal candidiasis, the AFPs demonstrate not only antifungal activity, but also promote the growth of beneficial Lactobacillus spp. This research provides valuable insights for the development of fungus-specific AFPs and offers a promising strategy for the treatment of fungal infectious diseases.


Assuntos
Antifúngicos , Histatinas , Histatinas/química , Histatinas/farmacologia , Animais , Antifúngicos/farmacologia , Antifúngicos/química , Feminino , Camundongos , Candida albicans/efeitos dos fármacos , Candidíase Vulvovaginal/tratamento farmacológico , Candidíase Vulvovaginal/microbiologia , Testes de Sensibilidade Microbiana , Humanos , Espécies Reativas de Oxigênio/metabolismo , Peptídeos/química , Peptídeos/farmacologia , Fungos/efeitos dos fármacos
13.
Acta Biomater ; 185: 215-225, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-39067645

RESUMO

Pseudomonas aeruginosa (P. aeruginosa) is a major pathogen that causes infectious diseases. It has high tendency to form biofilms, resulting in the failure of traditional antibiotic therapies. Inspired by the phenomenon that co-culture of Escherichia coli (E. coli) and P. aeruginosa leads to a biofilm reduction, we reveal that E. coli exopolysaccharides (EPS) can disrupt P. aeruginosa biofilm and increase its antibiotic susceptibility. The results show that E. coli EPS effectively inhibit biofilm formation and disrupt mature biofilms in P. aeruginosa, Staphylococcus aureus, and E. coli itself. The maximal inhibition and disruption rates against P. aeruginosa biofilm are 40 % and 47 %, respectively. Based on the biofilm-disrupting ability of E. coli EPS, we develop an E. coli EPS/antibiotic combining strategy for the treatment of P. aeruginosa biofilms. The combination with E. coli EPS increases the antibacterial efficiency of tobramycin against P. aeruginosa biofilms in vitro and in vivo. This study provides a promising strategy for treating biofilm infections. STATEMENT OF SIGNIFICANCE: Biofilm formation is a leading cause of chronic infections. It blocks antibiotics, increases antibiotic-tolerance, and aids in immune evasion, thus representing a great challenge in clinic. This study proposes a promising approach to combat pathogenic Pseudomonas aeruginosa (P. aeruginosa) biofilms by combining Escherichia coli exopolysaccharides with antibiotics. This strategy shows high efficiency in different P. aeruginosa stains, including two laboratory strains, PAO1 and ATCC 10145, as well as a clinically acquired carbapenem-resistant strain. In addition, in vivo experiments have shown that this approach is effective against implanted P. aeruginosa biofilms and can prevent systemic inflammation in mice. This strategy offers new possibilities to address the clinical failure of conventional antibiotic therapies for microbial biofilms.


Assuntos
Antibacterianos , Biofilmes , Escherichia coli , Polissacarídeos Bacterianos , Pseudomonas aeruginosa , Biofilmes/efeitos dos fármacos , Pseudomonas aeruginosa/efeitos dos fármacos , Pseudomonas aeruginosa/fisiologia , Polissacarídeos Bacterianos/farmacologia , Antibacterianos/farmacologia , Escherichia coli/efeitos dos fármacos , Animais , Testes de Sensibilidade Microbiana , Camundongos , Tobramicina/farmacologia
14.
ACS Infect Dis ; 10(8): 2950-2960, 2024 Aug 09.
Artigo em Inglês | MEDLINE | ID: mdl-38990785

RESUMO

Fungal keratitis (FK) is a leading cause of preventable blindness and eye loss. The poor antifungal activity, increased drug resistance, limited corneal permeability, and unsatisfactory biosafety of conventional antifungal eye drops are among the majority of the challenges that need to be addressed for currently available antifungal drugs. Herein, this study proposes an effective strategy that employs chitosan-poly(ethylene glycol)-LK13 peptide conjugate (CPL) in the treatment of FK. Nanoassembly CPL can permeate the lipophilic corneal epithelium in the transcellular route, and its hydrophilicity surface is a feature to drive its permeability through hydrophilic stroma. When encountering fungal cell membrane, CPL dissembles and exposes the antimicrobial peptide (LK13) to destroy fungal cell membranes, the minimum inhibitory concentration values of CPL against Fusarium solani (F. solani) are always not to exceed 8 µg peptide/mL before and after drug resistance induction. In a rat model of Fusarium keratitis, CPL demonstrates superior therapeutic efficacy than commercially available natamycin ophthalmic suspension. This study provides more theoretical and experimental supports for the application of CPL in the treatment of FK.


Assuntos
Antifúngicos , Quitosana , Córnea , Farmacorresistência Fúngica , Fusarium , Ceratite , Testes de Sensibilidade Microbiana , Polietilenoglicóis , Quitosana/química , Quitosana/farmacologia , Ceratite/tratamento farmacológico , Ceratite/microbiologia , Antifúngicos/farmacologia , Antifúngicos/química , Fusarium/efeitos dos fármacos , Animais , Ratos , Farmacorresistência Fúngica/efeitos dos fármacos , Polietilenoglicóis/química , Córnea/efeitos dos fármacos , Infecções Oculares Fúngicas/tratamento farmacológico , Infecções Oculares Fúngicas/microbiologia , Permeabilidade/efeitos dos fármacos , Fusariose/tratamento farmacológico , Peptídeos Antimicrobianos/farmacologia , Peptídeos Antimicrobianos/química , Natamicina/farmacologia , Natamicina/administração & dosagem , Masculino , Modelos Animais de Doenças , Ratos Sprague-Dawley
15.
Langmuir ; 29(7): 2152-8, 2013 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-23363366

RESUMO

A facile method to prepare monodisperse speckled colloids has been developed via one-step seeded polymerization from noncross-linked latex particles. It was found that both cross-linking agents in the added monomer mixture and charged initiation species are essential for the formation of speckles on composite latex particle surface in seeded polymerization. The size and number density of speckles on the surface are tunable by adjusting the concentration of surfactant. A possible mechanism for the formation of such speckled colloids has been proposed based on a series of control experiments. Speckled colloidal particles were used as substrates for the adsorption of tobacco mosaic virus, and a much stronger adsorption was observed compared to smooth particles, implying a potential application of these speckled particles in virus collection and more.

16.
Biomacromolecules ; 14(11): 4032-7, 2013 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-24093622

RESUMO

Viral nanoparticles (VNPs) have shown great potential as platforms for biomedical applications. Before using VNPs for further biomedical applications, it is important to clarify their biological behavior in vivo, which is rare for rod-like VNPs. In this paper, a study of tobacco mosaic virus (TMV), a typical rod-like VNP, is performed on blood clearance kinetics, biodistributions in both normal and tumor-bearing mice, histopathology and cytotoxicity. TMV was radiolabeled with (125)I using Iodogen method for in vivo quantitative analysis and imaging purpose. In the normal mice, the accumulation of TMV in the immune system led to a rapid blood clearance. The uptake of TMVs in the liver was less than that in the spleen, which is opposite to the results observed in the case of spherical VNPs. No signs of overt toxicity were observed in examined tissues according to the results of histological analysis. In addition, similar biodistribution patterns were observed in U87MG tumor-bearing mice.


Assuntos
Neoplasias Experimentais/virologia , Vírus do Mosaico do Tabaco/fisiologia , Animais , Sangue/imunologia , Sangue/virologia , Linhagem Celular Tumoral , Células HeLa , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Neoplasias Experimentais/sangue , Neoplasias Experimentais/imunologia , Vírus do Mosaico do Tabaco/imunologia , Vírus do Mosaico do Tabaco/isolamento & purificação , Vírus do Mosaico do Tabaco/metabolismo
17.
Chem Soc Rev ; 41(18): 6178-94, 2012 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-22880206

RESUMO

Viruses belong to a fascinating class of natural supramolecular structures, composed of multiple copies of coat proteins (CPs) that assemble into different shapes with a variety of sizes from tens to hundreds of nanometres. Because of their advantages including simple/economic production, well-defined structural features, unique shapes and sizes, genetic programmability and robust chemistries, recently viruses and virus-like nanoparticles (VLPs) have been used widely in biomedical applications and materials synthesis. In this critical review, we highlight recent advances in the use of virus coat proteins (VCPs) and viral nanoparticles (VNPs) as building blocks in self-assembly studies and materials development. We first discuss the self-assembly of VCPs into VLPs, which can efficiently incorporate a variety of different materials as cores inside the viral protein shells. Then, the self-assembly of VNPs at surfaces or interfaces is summarized. Finally, we discuss the co-assembly of VNPs with different functional materials (178 references).


Assuntos
Proteínas do Capsídeo/química , Nanopartículas/química , Nanotecnologia/métodos , Vírus/química , Proteínas do Capsídeo/ultraestrutura , Modelos Moleculares , Nanopartículas/ultraestrutura , Vírus/ultraestrutura
18.
Carbohydr Polym ; 314: 120964, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37173017

RESUMO

The biological differences of skin between rodent and human beings and the strong appeal to replace the experimental animals have led to the development of alternative models with structures similar to the real human skin. Keratinocytes cultured in vitro on conventional dermal scaffolds tend to form monolayer rather than multi-layer epithelial tissue architectures. How to construct human skin or epidermal equivalents with multi-layered keratinocytes similar to real human epidermis remains one of the greatest challenges. Herein, a human skin equivalent with multi-layered keratinocytes was constructed by 3D bioprinting fibroblasts and subsequent culturing epidermal keratinocytes. Biocompatible guanidinylated/PEGylated chitosan (GPCS) was used as the main component of bioink to 3D bioprint tissue-engineered dermis. The function of GPCS to promote HaCat cell proliferation and connection was confirmed at the genetic, cellular, and histological levels. Compared with the skin tissues with mono-layered keratinocytes engineered with collagen and gelatin, adding GPCS in the bioink generated tissue-engineered human skin equivalents with multi-layered keratinocytes. Such human skin equivalents could be alternative models for biomedical, toxicological, and pharmaceutical research.


Assuntos
Quitosana , Animais , Humanos , Quitosana/farmacologia , Quitosana/química , Pele/patologia , Queratinócitos , Epiderme , Engenharia Tecidual , Fibroblastos , Polietilenoglicóis , Células Cultivadas
19.
Adv Healthc Mater ; 12(10): e2202409, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36588425

RESUMO

Fungal hyphae deeply invade the cornea in fungal keratitis. The corneal stroma hinders the infiltration of antifungal drugs and reduces their bioavailability. Here, this work reports a peptide conjugate nano-assembly that permeates the stroma and kills the pathogen without irritating the ocular cornea. The hydrophilic surface of the nano-assembly ensures deep permeation into the stroma. When encountering a fungal hyphal cell, the nano-assembly disassembles and exposes the α-helical peptide to destroy the fungal membrane, thus inactivating the pathogen. In a rabbit model of fungal keratitis, the nano-assembly exhibits a better therapeutic effect than commercially available natamycin ophthalmic suspension. Peptide conjugates with a nano-assembled structure and assembly-disassembly behavior could serve as the foundation of a new therapy for fungal keratitis.


Assuntos
Infecções Oculares Fúngicas , Ceratite , Animais , Coelhos , Ceratite/tratamento farmacológico , Ceratite/microbiologia , Córnea , Infecções Oculares Fúngicas/tratamento farmacológico , Infecções Oculares Fúngicas/microbiologia , Antifúngicos/farmacologia , Antifúngicos/uso terapêutico , Antifúngicos/química , Peptídeos/farmacologia , Peptídeos/uso terapêutico
20.
J Colloid Interface Sci ; 641: 126-134, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-36931211

RESUMO

Surface-associated microbe contamination by Gram-negative bacteria poses a serious problem in medical care. Cationic peptides or polymers are the main materials used for antibacterial surface coating, but the positive charge may lead to blood coagulation. Therefore, exploiting surface coating which is free of positive charge and is effective for Gram-negative bacteria inactivation is in urgent need. In this study, inspired by the affinity between lipopolysaccharides of Gram-negative bacteria and Toll-like receptors of immune cells, we develop a leucine-based tetrapeptide coating strategy for combating Gram-negative bacteria. The obtained surface has excellent bactericidal activity against Gram-negative bacteria like Pseudomonas aeruginosa and Escherichia coli. A 1 mm2 coated glass surface could kill > 9.9 × 104 CFU bacteria in 1 h and has nearly no damage to mammal cells. Moreover, this surface coating strategy could be applied on various surfaces like glass slices, glass capillary cavity and thermoplastic polyurethane slices. And the coated surface could largely mitigate the microbe contamination in an in vivo subcutaneous implantation. This work paves a new way for antibacterial surface-coating which is behaving no positive charge and is of great importance for biomedical devices.


Assuntos
Antibacterianos , Peptídeos , Animais , Leucina/farmacologia , Antibacterianos/farmacologia , Antibacterianos/química , Bactérias Gram-Negativas , Bactérias , Materiais Revestidos Biocompatíveis/química , Mamíferos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA