RESUMO
Human endogenous retroviruses (HERVs) are abundant sequences that persist within the human genome as remnants of ancient retroviral infections. These sequences became fixed and accumulate mutations or deletions over time. HERVs have affected human evolution and physiology by providing a unique repertoire of coding and non-coding sequences to the genome. In healthy individuals, HERVs participate in immune responses, formation of syncytiotrophoblasts and cell-fate specification. In this Review, we discuss how endogenized retroviral motifs and regulatory sequences have been co-opted into human physiology and how they are tightly regulated. Infections and mutations can derail this regulation, leading to differential HERV expression, which may contribute to pathologies including neurodegeneration, pathological inflammation and oncogenesis. Emerging evidence demonstrates that HERVs are crucial to human health and represent an understudied facet of many diseases, and we therefore argue that investigating their fundamental properties could improve existing therapies and help develop novel therapeutic strategies.
Assuntos
Retrovirus Endógenos , Humanos , Retrovirus Endógenos/genética , Carcinogênese/genéticaRESUMO
Germ cells are subject to exogenous retrovirus infections occasionally resulting in the genomic integration of retroviral gene sequences. These endogenized retroviruses (ERVs) are found throughout mammalian genomes. Initially thought to be inert, it is now appreciated that ERVs have often been co-opted for complex physiological processes. However, unregulated ERV transposition and expression are a threat to cellular fitness and genomic integrity, and so mammalian cells must control ERVs through pre- and post-transcriptional mechanisms. Here, we provide a field guide to the molecular machinery that identifies and silences ERVs.
Assuntos
Retrovirus Endógenos , Infecções por Retroviridae , Animais , Retrovirus Endógenos/genética , Infecções por Retroviridae/genética , Genômica , Mamíferos/genéticaRESUMO
COVID-19 remains a stark health threat worldwide, in part because of minimal levels of targeted vaccination outside high-income countries and highly transmissible variants causing infection in vaccinated individuals. Decades of theoretical and experimental data suggest that nonspecific effects of non-COVID-19 vaccines may help bolster population immunological resilience to new pathogens. These routine vaccinations can stimulate heterologous cross-protective effects, which modulate nontargeted infections. For example, immunization with Bacillus Calmette-Guérin, inactivated influenza vaccine, oral polio vaccine, and other vaccines have been associated with some protection from SARS-CoV-2 infection and amelioration of COVID-19 disease. If heterologous vaccine interventions (HVIs) are to be seriously considered by policy makers as bridging or boosting interventions in pandemic settings to augment nonpharmaceutical interventions and specific vaccination efforts, evidence is needed to determine their optimal implementation. Using the COVID-19 International Modeling Consortium mathematical model, we show that logistically realistic HVIs with low (5 to 15%) effectiveness could have reduced COVID-19 cases, hospitalization, and mortality in the United States fall/winter 2020 wave. Similar to other mass drug administration campaigns (e.g., for malaria), HVI impact is highly dependent on both age targeting and intervention timing in relation to incidence, with maximal benefit accruing from implementation across the widest age cohort when the pandemic reproduction number is >1.0. Optimal HVI logistics therefore differ from optimal rollout parameters for specific COVID-19 immunizations. These results may be generalizable beyond COVID-19 and the US to indicate how even minimally effective heterologous immunization campaigns could reduce the burden of future viral pandemics.
Assuntos
Vacinas contra COVID-19/imunologia , COVID-19/imunologia , Modelos Teóricos , SARS-CoV-2/imunologia , Estações do Ano , Vacinação/métodos , Algoritmos , Vacina BCG/administração & dosagem , Vacina BCG/imunologia , COVID-19/epidemiologia , COVID-19/virologia , Vacinas contra COVID-19/administração & dosagem , Mortalidade Hospitalar , Hospitalização/estatística & dados numéricos , Humanos , Unidades de Terapia Intensiva/estatística & dados numéricos , Pandemias/prevenção & controle , Admissão do Paciente/estatística & dados numéricos , SARS-CoV-2/fisiologia , Taxa de Sobrevida , Estados Unidos/epidemiologia , Vacinação/estatística & dados numéricosRESUMO
Human endogenous retroviruses (HERVs) are the germline embedded proviral fragments of ancient retroviral infections that make up roughly 8% of the human genome. Our understanding of HERVs in physiology primarily surrounds their non-coding functions, while their protein coding capacity remains virtually uncharacterized. Therefore, we applied the bioinformatic pipeline "hervQuant" to high-resolution ribosomal profiling of healthy tissues to provide a comprehensive overview of translationally active HERVs. We find that HERVs account for 0.1-0.4% of all translation in distinct tissue-specific profiles. Collectively, our study further supports claims that HERVs are actively translated throughout healthy tissues to provide sequences of retroviral origin to the human proteome.
Assuntos
Retrovirus Endógenos , Ribossomos , Humanos , Retrovirus Endógenos/genética , Ribossomos/genéticaRESUMO
Immunologists are central to fighting any pandemic. From pathogenesis to disease modeling, pharmaceuticals to vaccines, immunologists play a crucial role in translating basic science into effective response strategies. This article describes our view on how lessons from the coronavirus disease 2019 (COVID-19) pandemic can be developed into an immunologists' guide for preparedness for future pandemics.
Assuntos
Alergia e Imunologia/tendências , Vacinas contra COVID-19/imunologia , COVID-19/imunologia , SARS-CoV-2/fisiologia , Animais , Artrite Infecciosa/imunologia , Humanos , Imunidade , Pandemias , Guias de Prática Clínica como Assunto , Saúde Pública , Pesquisa Translacional Biomédica , Vacinação , Vacinas , Organização Mundial da SaúdeRESUMO
BACKGROUND: Human endogenous retroviruses (HERVs) are sequences in the human genome that originated from infections with ancient retroviruses during our evolution. Previous studies have linked HERVs to neurodegenerative diseases, but defining their role in aetiology has been challenging. Here, we used a retrotranscriptome-wide association study (rTWAS) approach to assess the relationships between genetic risk for neurodegenerative diseases and HERV expression in the brain, calculated with genomic precision. METHODS: We analysed genetic association statistics pertaining to Alzheimer's disease, amyotrophic lateral sclerosis, multiple sclerosis, and Parkinson's disease, using HERV expression models calculated from 792 cortical samples. Robust risk factors were considered those that survived multiple testing correction in the primary analysis, which were also significant in conditional and joint analyses, and that had a posterior inclusion probability above 0.5 in fine-mapping analyses. RESULTS: The primary analysis identified 12 HERV expression signatures associated with neurodegenerative disease susceptibility. We found one HERV expression signature robustly associated with amyotrophic lateral sclerosis on chromosome 12q14 (MER61_12q14.2) and one robustly associated with multiple sclerosis on chromosome 1p36 (ERVLE_1p36.32a). A co-expression analysis suggested that these HERVs are involved in homophilic cell adhesion via plasma membrane adhesion molecules. CONCLUSIONS: We found HERV expression profiles robustly associated with amyotrophic lateral sclerosis and multiple sclerosis susceptibility, highlighting novel risk mechanisms underlying neurodegenerative disease, and offering potential new targets for therapeutic intervention.
RESUMO
In this Brief Communications Arising Comment, the first three authors (Osuna, Lim and Kublin) should have been listed as equally contributing authors; this has been corrected online.
RESUMO
While vaccines traditionally have been designed and used for protection against infection or disease caused by one specific pathogen, there are known off-target effects from vaccines that can impact infection from unrelated pathogens. The best-known non-specific effects from an unrelated or heterologous vaccine are from the use of the Bacillus Calmette-Guérin (BCG) vaccine, mediated partly through trained immunity. Other vaccines have similar heterologous effects. This review covers molecular mechanisms behind the heterologous effects, and the potential use of heterologous vaccination in the current COVID-19 pandemic. We then discuss novel pandemic response strategies based on rapidly deployed, widespread heterologous vaccination to boost population-level immunity for initial, partial protection against infection and/or clinical disease, while specific vaccines are developed.
Assuntos
Vacina BCG/imunologia , COVID-19/prevenção & controle , Pandemias , Vacinas/imunologia , Vacina BCG/uso terapêutico , COVID-19/imunologia , COVID-19/virologia , Humanos , Imunidade Heteróloga/imunologia , SARS-CoV-2/imunologia , SARS-CoV-2/patogenicidade , Vacinas/uso terapêuticoRESUMO
The ongoing global COVID-19 pandemic has thrown into sharp relief the gap between modern biology's ability to investigate and respond to a novel pathogen and modern medicine's ability to marshal effective front-line interventions to limit its immediate health impact. While we have witnessed the rapid development of innovative vaccines against SARS-CoV-2 using novel molecular platforms, these have yet to alter the pandemic's long-term trajectory in all but a handful of high-income countries. Health workers at the clinical front lines have little more in their clinical armamentarium than was available a century ago-chiefly oxygen and steroids-and yet advances in modern immunology and immunotherapeutics suggest an underuse of extant and effective, if unorthodox, therapies, which we now call "Extreme Immunotherapies for Pandemics (EIPs)."
Assuntos
Pandemias/prevenção & controle , COVID-19/imunologia , Vacinas contra COVID-19/imunologia , Humanos , Imunoterapia/métodos , SARS-CoV-2/imunologiaRESUMO
BACKGROUND: Vaccination programs have been launched worldwide to halt the spread of COVID-19. However, the identification of existing, safe compounds with combined treatment and prophylactic properties would be beneficial to individuals who are waiting to be vaccinated, particularly in less economically developed countries, where vaccine availability may be initially limited. METHODS: We used a data-driven approach, combining results from the screening of a large transcriptomic database (L1000) and molecular docking analyses, with in vitro tests using a lung organoid model of SARS-CoV-2 entry, to identify drugs with putative multimodal properties against COVID-19. RESULTS: Out of thousands of FDA-approved drugs considered, we observed that atorvastatin was the most promising candidate, as its effects negatively correlated with the transcriptional changes associated with infection. Atorvastatin was further predicted to bind to SARS-CoV-2's main protease and RNA-dependent RNA polymerase, and was shown to inhibit viral entry in our lung organoid model. CONCLUSIONS: Small clinical studies reported that general statin use, and specifically, atorvastatin use, are associated with protective effects against COVID-19. Our study corroborrates these findings and supports the investigation of atorvastatin in larger clinical studies. Ultimately, our framework demonstrates one promising way to fast-track the identification of compounds for COVID-19, which could similarly be applied when tackling future pandemics.
Assuntos
Antivirais/farmacologia , Atorvastatina/farmacologia , Tratamento Farmacológico da COVID-19 , Pulmão/efeitos dos fármacos , Organoides/efeitos dos fármacos , SARS-CoV-2/efeitos dos fármacos , Antivirais/química , Atorvastatina/química , COVID-19/prevenção & controle , Linhagem Celular , Proteases 3C de Coronavírus/química , RNA-Polimerase RNA-Dependente de Coronavírus/química , Doxiciclina/farmacologia , Aprovação de Drogas , Reposicionamento de Medicamentos , Regulação da Expressão Gênica/efeitos dos fármacos , Humanos , Pulmão/virologia , Modelos Biológicos , Simulação de Acoplamento Molecular , Organoides/virologia , Cloridrato de Raloxifeno/química , Cloridrato de Raloxifeno/farmacologia , SARS-CoV-2/fisiologia , Glicoproteína da Espícula de Coronavírus/genética , Trifluoperazina/química , Trifluoperazina/farmacologia , Estados Unidos , United States Food and Drug Administration , Vesiculovirus/genética , Internalização do Vírus/efeitos dos fármacosRESUMO
Mucosa-associated invariant T (MAIT) cells are unconventional innate-like T cells that recognize microbial riboflavin metabolites presented by the MHC class I-like protein MR1. Human MAIT cells predominantly express the CD8α coreceptor (CD8+), with a smaller subset lacking both CD4 and CD8 (double-negative, DN). However, it is unclear if these two MAIT cell subpopulations distinguished by CD8α represent functionally distinct subsets. Here, we show that the two MAIT cell subsets express divergent transcriptional programs and distinct patterns of classic T cell transcription factors. Furthermore, CD8+ MAIT cells have higher levels of receptors for IL-12 and IL-18, as well as of the activating receptors CD2, CD9, and NKG2D, and display superior functionality following stimulation with riboflavin-autotrophic as well as riboflavin-auxotrophic bacterial strains. DN MAIT cells display higher RORγt/T-bet ratio, and express less IFN-γ and more IL-17. Furthermore, the DN subset displays enrichment of an apoptosis gene signature and higher propensity for activation-induced apoptosis. During development in human fetal tissues, DN MAIT cells are more mature and accumulate over gestational time with reciprocal contraction of the CD8+ subset. Analysis of the T cell receptor repertoire reveals higher diversity in CD8+ MAIT cells than in DN MAIT cells. Finally, chronic T cell receptor stimulation of CD8+ MAIT cells in an in vitro culture system supports the accumulation and maintenance of the DN subpopulation. These findings define human CD8+ and DN MAIT cells as functionally distinct subsets and indicate a derivative developmental relationship.
Assuntos
Linfócitos T CD8-Positivos/fisiologia , Subpopulações de Linfócitos T/fisiologia , Feminino , Feto , Regulação da Expressão Gênica , Humanos , Masculino , Técnicas de Amplificação de Ácido Nucleico , Gravidez , RNA/genética , RNA/metabolismo , Útero/citologiaRESUMO
HIV-1 can downregulate HLA-C on infected cells, using the viral protein Vpu, and the magnitude of this downregulation varies widely between primary HIV-1 variants. The selection pressures that result in viral downregulation of HLA-C in some individuals, but preservation of surface HLA-C in others are not clear. To better understand viral immune evasion targeting HLA-C, we have characterized HLA-C downregulation by a range of primary HIV-1 viruses. 128 replication competent viral isolates from 19 individuals with effective anti-retroviral therapy, show that a substantial minority of individuals harbor latent reservoir virus which strongly downregulates HLA-C. Untreated infections display no change in HLA-C downregulation during the first 6 months of infection, but variation between viral quasispecies can be detected in chronic infection. Vpu molecules cloned from plasma of 195 treatment naïve individuals in chronic infection demonstrate that downregulation of HLA-C adapts to host HLA genotype. HLA-C alleles differ in the pressure they exert for downregulation, and individuals with higher levels of HLA-C expression favor greater viral downregulation of HLA-C. Studies of primary and mutant molecules identify 5 residues in the transmembrane region of Vpu, and 4 residues in the transmembrane domain of HLA-C, which determine interactions between Vpu and HLA. The observed adaptation of Vpu-mediated downregulation to host genotype indicates that HLA-C alleles differ in likelihood of mediating a CTL response that is subverted by viral downregulation, and that preservation of HLA-C expression is favored in the absence of these responses. Finding that latent reservoir viruses can downregulate HLA-C could have implications for HIV-1 cure therapy approaches in some individuals.
Assuntos
Infecções por HIV/genética , Infecções por HIV/imunologia , HIV-1/patogenicidade , Antígenos HLA-C/genética , Sequência de Aminoácidos , Reservatórios de Doenças/virologia , Regulação para Baixo , Variação Genética , Genótipo , Infecções por HIV/virologia , HIV-1/imunologia , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Proteínas do Vírus da Imunodeficiência Humana/química , Proteínas do Vírus da Imunodeficiência Humana/genética , Proteínas do Vírus da Imunodeficiência Humana/imunologia , Humanos , Evasão da Resposta Imune , Proteínas Virais Reguladoras e Acessórias/química , Proteínas Virais Reguladoras e Acessórias/genética , Proteínas Virais Reguladoras e Acessórias/imunologiaRESUMO
Characterization of Human Endogenous Retrovirus (HERV) expression within the transcriptomic landscape using RNA-seq is complicated by uncertainty in fragment assignment because of sequence similarity. We present Telescope, a computational software tool that provides accurate estimation of transposable element expression (retrotranscriptome) resolved to specific genomic locations. Telescope directly addresses uncertainty in fragment assignment by reassigning ambiguously mapped fragments to the most probable source transcript as determined within a Bayesian statistical model. We demonstrate the utility of our approach through single locus analysis of HERV expression in 13 ENCODE cell types. When examined at this resolution, we find that the magnitude and breadth of the retrotranscriptome can be vastly different among cell types. Furthermore, our approach is robust to differences in sequencing technology and demonstrates that the retrotranscriptome has potential to be used for cell type identification. We compared our tool with other approaches for quantifying transposable element (TE) expression, and found that Telescope has the greatest resolution, as it estimates expression at specific TE insertions rather than at the TE subfamily level. Telescope performs highly accurate quantification of the retrotranscriptomic landscape in RNA-seq experiments, revealing a differential complexity in the transposable element biology of complex systems not previously observed. Telescope is available at https://github.com/mlbendall/telescope.
Assuntos
Elementos de DNA Transponíveis/genética , Retrovirus Endógenos/genética , Perfilação da Expressão Gênica/métodos , Software , Transcriptoma/genética , Linhagem Celular , Biologia Computacional , Técnicas Citológicas , Humanos , Especificidade de Órgãos , Análise de Sequência de RNA/métodosRESUMO
Zika virus (ZIKV) outbreaks pose a massive public health threat in several countries. We have developed an in vivo model to investigate the host-ZIKV interaction in Drosophila We have found that a strain of ZIKV replicates in wild-type flies without reducing their survival ability. We have shown that ZIKV infection triggers RNA interference and that mutating Dicer-2 results in enhanced ZIKV load and increased susceptibility to ZIKV infection. Using a flavivirus-specific Ab, we have found that ZIKV is localized in the gut and fat body cells of the infected wild-type flies and results in their perturbed homeostasis. In addition, Dicer-2 mutants display severely reduced insulin activity, which could contribute toward the increased mortality of these flies. Our work establishes the suitability of Drosophila as the model system to study host-ZIKV dynamics, which is expected to greatly advance our understanding of the molecular and physiological processes that determine the outcome of this disease.
Assuntos
Modelos Animais de Doenças , Proteínas de Drosophila/imunologia , Interações Hospedeiro-Patógeno/imunologia , RNA Helicases/imunologia , Ribonuclease III/imunologia , Infecção por Zika virus/imunologia , Animais , Drosophila melanogaster/imunologia , Drosophila melanogaster/virologia , Homeostase/imunologiaRESUMO
Innate lymphocytes are selectively enriched in the liver where they have important roles in liver immunology. Murine studies have shown that type I NKT cells can promote liver inflammation, whereas type II NKT cells have an anti-inflammatory role. In humans, type II NKT cells were found to accumulate in the gut during inflammation and IL13Rα2 was proposed as a marker for these cells. In the human liver, less is known about type I and II NKT cells. Here, we studied the phenotype and function of human liver T cells expressing IL13Rα2. We found that IL13Rα2 was expressed by around 1% of liver-resident memory T cells but not on circulating T cells. In support of their innate-like T-cell character, the IL13Rα2+ T cells had higher expression of promyelocytic leukaemia zinc finger (PLZF) compared to IL13Rα2- T cells and possessed the capacity to produce IL-22. However, only a minority of human liver sulfatide-reactive type II NKT cells expressed IL13Rα2. Collectively, these findings suggest that IL13Rα2 identifies tissue-resident intrahepatic T cells with innate characteristics and the capacity to produce IL-22.
Assuntos
Memória Imunológica/imunologia , Subunidade alfa2 de Receptor de Interleucina-13/metabolismo , Interleucinas/metabolismo , Fígado/imunologia , Células T Matadoras Naturais/imunologia , Proteína com Dedos de Zinco da Leucemia Promielocítica/metabolismo , Biomarcadores/metabolismo , Humanos , Fígado/citologia , Interleucina 22RESUMO
Almost 80% of viral transcripts during early HIV-1 infection encode the Nef protein, which has been implicated in altering expression of a number of genes. In this study, we infected primary human CD4+ T cells with pseudotyped Nef-containing or Nef-deleted (Δ-nef) NL4-3 virus and used RNA-Sequencing (RNA-Seq) for transcriptomic analysis. Our results showed that the interferon response, IL-15 and JAK/STAT signaling, as well as genes involved in metabolism, apoptosis, cell cycle regulation, and ribosome biogenesis were all altered in the presence of Nef. These early Nef-mediated transcriptional alterations may play a role in priming the host cell for cellular activation and viral replication.
Assuntos
Linfócitos T CD4-Positivos/virologia , Regulação Viral da Expressão Gênica , HIV-1/fisiologia , Produtos do Gene nef do Vírus da Imunodeficiência Humana/fisiologia , Linfócitos T CD4-Positivos/metabolismo , Células Cultivadas , Humanos , Replicação ViralAssuntos
COVID-19 , Vacinas , COVID-19/prevenção & controle , Vacinas contra COVID-19 , Humanos , Imunização SecundáriaRESUMO
Recent advances in the understanding of neuropathogenesis associated with Zika virus (ZIKV) infection has led to descriptions of neonatal microcephaly cases. However, none of these reports have evaluated the humoral response during ZIKV infection. We report here polyfunctional immune activation associated with increased interferon-gamma-inducible protein 10, interleukin (IL)-6, IL-8, vascular endothelial growth factor (VEGF), monocyte chemoattractive protein 1 (MCP-1), and granulocyte colony-stimulating factor (G-CSF) levels in the amniotic fluid of ZIKV-positive pregnant women with neonatal microcephaly. These cytokines have been associated not only with neuronal damage, but also with differentiation and proliferation of neural progenitor cells. Our results suggested that the immune activation caused by ZIKV infection in the uterine environment could also interfere with fetal development. ANN NEUROL 2017;81:152-156.