Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Genet Mol Biol ; 46(1 Suppl 1): e20220002, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37017705

RESUMO

Effective strategies for disease control are crucial for sustaining world food production and ensuring food security for the population. Wheat blast, a disease caused by the pathogen Magnaporthe oryzae pathotype Triticum, has been a concern for cereal producers and researchers due to its aggressiveness and rapid expansion. To solve this problem, the development of resistant varieties with durable resistance is an effective, economical and sustainable way to control the disease. Conventional breeding can be aided by several molecular tools to facilitate the mining of many sources of resistance, such as R genes and QTLs. The identification of new sources of resistance, whether in the wheat crop or in other cereals are an opportunity for efficient wheat breeding through the application of different techniques. Since this disease is still poorly studied in wheat, knowledge of the rice Magnaporthe pathotype may be adapted to control wheat blast. Thus, genetic mapping, molecular markers, transgenic approaches, and genomic editing are valuable technologies to fight wheat blast. This review aimed to compile the biotechnological alternatives available to accelerate the development of improved cultivars for resistance to wheat blast.

2.
Plants (Basel) ; 12(18)2023 Sep 05.
Artigo em Inglês | MEDLINE | ID: mdl-37765340

RESUMO

WRKY transcription factor genes compose an important family of transcriptional regulators that are present in several plant species. According to previous studies, these genes can also perform important roles in bilberry (Vaccinium myrtillus L.) metabolism, making it essential to deepen our understanding of fruit ripening regulation and anthocyanin biosynthesis. In this context, the detailed characterization of these proteins will provide a comprehensive view of the functional features of VmWRKY genes in different plant organs and in response to different intensities of light. In this study, the investigation of the complete genome of the bilberry identified 76 VmWRKY genes that were evaluated and distributed in all twelve chromosomes. The proteins encoded by these genes were classified into four groups (I, II, III, and IV) based on their conserved domains and zinc finger domain types. Fifteen pairs of VmWRKY genes in segmental duplication and four pairs in tandem duplication were detected. A cis element analysis showed that all promoters of the VmWRKY genes contain at least one potential cis stress-response element. Differential expression analysis of RNA-seq data revealed that VmWRKY genes from bilberry show preferential or specific expression in samples. These findings provide an overview of the functional characterization of these proteins in bilberry.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA