Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Inorg Chem ; 62(40): 16323-16328, 2023 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-37755155

RESUMO

In this study, we report the easy and low-cost synthesis of calcium niobate (CaNb2O6) with the isomorphic structure of the Rynersonite mineral for CaTa2O6. The samples were prepared by the ball milling method at room temperature at a synthesis time of 0.5, 1, 2, 3, and 4 h. The structural analysis by XRD, Rietveld refinement, and vibrational Raman spectroscopy confirms all diffraction peaks and active mode characteristics of the pure phase of CaNb2O6 for the 3-h and 4-h samples, with a crystallite size of 22.5 and 23.2 nm, respectively. The optical band gap obtained was 3.18(2) eV (3-h sample), lower than the optical band gap for niobium oxide, characteristic of materials with strong photon absorption in the UVA region of the spectrum. The surface analysis by scanning electron microscopy reveals the obtention of several agglomerates of irregular particles ranging in the submicro and micro scales. Therefore, the present approach successfully obtained calcium niobate with the formula CaNb2O6 at a short synthesis time and room temperature.

2.
J Microsc ; 282(2): 162-174, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33314131

RESUMO

In this paper, we introduced an advanced discussion of the 3D morphology of TiO2 coatings deposited on ITO substrate by electrodeposition under different deposition times. Atomic force microscopy was applied for obtaining topographic images of the samples. The images were processed using the MountainsMap 8.0 commercial software according to ISO 25178-2:2012. Moreover, fractal theory was applied to study the surface microtexture of coatings. The morphology was affected by the deposition time, where the grain size decreased with the increase of the time, making film's surfaces smoother. In addition, the surface roughness exhibited a random behaviour, but does not presented significant difference between samples. The fractal dimension showed similar values for all coatings. In contrast, surface texture isotropy also exhibited random behaviour. However, advanced fractal parameters revealed that when the deposition time increased, the coatings microtexture has become uniform and less porous. Furthermore, all coatings presented high topographic uniformity, regardless of deposition time. These results revealed that the morphology and microtexture of TiO2 -based coatings can be controlled by the deposition time. LAY DESCRIPTION: An advanced characterization on the micromorphology of 3D morphology, using AFM images, of Titanium dioxide (TiO2 ) coatings deposited on ITO substrate by electrodeposition under different deposition times. TiO2 is one of the most studied semiconductors to make photovoltaic devices. The versatility of this semiconductor is associated with low toxicity, high photochemical stability, abundance, and the facility to obtain by conventional synthesis routes. The obtention of a homogeneous and stable layer in the semiconductor TiO2 film deposition is a crucial stage in the assembly of sensitized photovoltaic devices. Atomic Force Microscopy (AFM) is a technique which can magnify up to a billion times and it uses a tip or probe which touches the sample surface point by point. The tip deflection is interpreted as the surface topography by the software, producing 2D or 3D images that generate several tribological parameters such as roughness in respect to a scanned area, has been a technique widely reported in the morphological characterization, determination of thickness, roughness, and particle size in thin films. Therefore, in this paper, the morphology was studied by atomic force microscopy using MountainsMap commercial software. The main goal was to study the influence of the deposition time on the morphology and microtexture of the material. New parameters such as surface entropy, fractal succolarity and fractal lacunarity were obtained for studying coatings microtexture's complexity.

3.
Inorg Chem ; 59(9): 6039-6046, 2020 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-32282194

RESUMO

In this work, we report the room-temperature synthesis of pure calcium tungstate (CaWO4) and copper-doped calcium tungstate solid solution (Ca0.99Cu0.01WO4) by using a sonochemistry method. These materials were structurally characterized by X-ray diffraction (XRD) and Raman spectroscopy. The obtained XRD patterns were submitted to a Rietveld refinement showing, in both materials, a tetragonal phase with space group and point group of I41/a and C4h6, respectively. Microscopy images of both materials, obtained by field emission scanning electron microscopy, showed spherical agglomerated structures composed by spherical nanoparticles, while calcium and tungstate elements were identified by energy-dispersive X-ray spectroscopy for pure calcium tungstate and copper, calcium, and tungstate for Ca0.99Cu0.01WO4 solid solution. The decrease of optical band gap (Egap) from 4.0 eV (CaWO4) to 3.45 eV (Ca0.99Cu0.01WO4) confirmed the substitution of calcium atoms for copper atoms in the clusters [CaO8]. Maximum photoluminescence (PL) emission was shifted from 522 nm in the pure CaWO4 to 475 nm in the Ca0.99Cu0.01WO4 solid solution. Consequently, there was an increase of PL emissions intensity in the blue and green regions of the visible spectrum, due to electronic transitions between the orbitals O 2p, Cu 3d, and W 5d.

4.
ACS Omega ; 9(21): 23069-23085, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38826548

RESUMO

The design of particle size and morphology are a promising approach to investigating the properties exhibited by different types of materials. In the present study, the silver phosphate microcrystals (Ag3PO4) were first time synthesized using the hydrothermal and solvothermal method by combination of the solvents water/isopropyl alcohol (SP-IA), water/acetone (SP-AC), water/ammonium hydroxide (AP-AH), all in a ratio of 1:1 (v/v). The synthesized materials were structurally characterized by X-ray diffraction (XRD), Rietveld refinement, and Raman vibrational spectroscopy, where it was confirmed that the pure phase was achieved for all prepared samples. The study of the optical properties by UV-vis diffuse reflectance spectroscopy (UV-vis/DRS) and colorimetry revealed that the obtained materials have an optical bandgap between 2.30 and 2.32 eV. The FE-SEM images collected revealed different morphologies for the synthesized materials, with a predominance of tetraploid-shaped microcrystals for the SP-AC sample, rods for the SP-IA sample, cubes and polyhedral for the SP-WT sample and condensed polyhedral for the SP-AH sample. The photocatalytic performance against the Rhodamine B dye (RhB) was 100%, 98.2%, 94.2%, and 87.8%, using the samples SP-AC, SP-IA, SP-WT, and SP-AH as photocatalyst at time of 12 min. On the other hand, the antimicrobial performance of SP-AC sample showed superior performance, resulting in the minimum inhibitory concentration-MIC of 7.81 µg mL-1 for the strain of E. coli, 7.81 µg mL-1 for the strain of E. aureus, 15.62 µg mL-1 for the strain of P. auruginosa, and 15.62 µg mL-1 for the strains of C. albicans. In this way, was synthesized a promissory antimicrobial and photocatalyst material, through an easy and cost-effective method.

5.
Micromachines (Basel) ; 13(8)2022 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-36014283

RESUMO

TiO2 time-dependent electrodeposited thin films were synthesized using an electrophoretic apparatus. The XRD analysis revealed that the films could exhibit a crystalline structure composed of ~81% anatase and ~6% rutile after 10 s of deposition, with crystallite size of 15 nm. AFM 3D maps showed that the surfaces obtained between 2 and 10 s of deposition exhibit strong topographical irregularities with long-range and short-range correlations being observed in different surface regions, a trend also observed by the Minkowski functionals. The height-based ISO, as well as specific surface microtexture parameters, showed an overall decrease from 2 to 10 s of deposition, showing a subtle decrease in the vertical growth of the films. The surfaces were also mapped to have low spatial dominant frequencies, which is associated with the similar roughness profile of the films, despite the overall difference in vertical growth observed. The electrical conductivity measurements showed that despite the decrease in topographical roughness, the films acquired a thickness capable of making them increasingly insulating from 2 to 10 s of deposition. Thus, our results prove that the deposition time used during the electrophoretic experiment consistently affects the films' structure, morphology, and electrical conductivity.

6.
Ultrason Sonochem ; 58: 104620, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31450327

RESUMO

In this study we report the synthesis of silver tungstate microcrystals (α-Ag2WO4) by sonochemistry method (SC) at 65 °C and sonochemistry followed by conventional hydrothermal (SC + HC) for 1, 6 and 12 h, at 140 °C. The structural characterization by XRD confirms the alpha phase of the orthorhombic structure and the space group Pn2n, for all synthesized microcrystals. All the actives modes identified at the Raman spectroscopy were characteristic of alpha phase. The optical band gap by UV-Vis spectroscopy using the diffuse reflectance were 2.98, 3.0, 2.99 and 2.96 eV, for the microcrystals SC, SC + HC-1 h, SC + HC-6 h and SC + HC-12 h, respectively. FE-SEM images show the rod-like microcrystals, however, exhibiting the plane surface (1 0 1) only for the synthesized microcrystals with the assistance of the hydrothermal method (SC + HC-1 h, SC + HC- 6 h and SC + HC-12 h). The antimicrobial potential was confirmed for all α-Ag2WO4 microcrystals synthesized. However, the SC + HC-12 h microcrystals were more susceptible in the bacterial and fungal inhibition, with MIC values for microorganisms C. albicans, T. rubrum, MRSA e EHEC, 0.2-0.5, 4-9, 250 and 31.25 µg mL-1, respectively.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA