Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 123
Filtrar
1.
Am J Geriatr Psychiatry ; 29(12): 1239-1252, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33846084

RESUMO

OBJECTIVES: Anticholinergic burden has been associated with deleterious effects on cognition particularly in those with an underlying brain disorder. We developed a new assay based on cultured cells to measure serum anticholinergic activity (cSAA). We report on its relationships with established anticholinergic burden rating scales and cognitive assessments in older patients with mild cognitive impairment (MCI) or major depressive disorder (MDD) in remission or both. DESIGN: The study was cross sectional in nature. SETTING: This was a five-centre study conducted in Toronto, Canada. PARTICIPANTS: Serum samples were collected and cSAA levels were measured in 311 participants aged 60 years or older (154 with MCI, 57 with MDD, and 100 with MCI + MDD). MEASUREMENTS: The cSAA assay uses radio-ligand binding to cultured cells stably expressing the muscarinic M1 receptors, with an added procedure to remove potential confounds associated with serum proteins. Lists of medications were used to calculate Anticholinergic Burden and Anticholinergic Drug Scale total scores. Participants also completed a comprehensive cognitive battery. RESULTS: Higher cSAA levels were associated with higher anticholinergic burden and anticholinergic drug scale scores, and also with lower performance on executive function tests, after adjusting for age, gender, education, and diagnosis. CONCLUSIONS: These results support the use of the cSAA assay as a laboratory measure of anticholinergic burden.


Assuntos
Antagonistas Colinérgicos , Transtorno Depressivo Maior , Idoso , Células Cultivadas , Antagonistas Colinérgicos/efeitos adversos , Cognição , Estudos Transversais , Humanos
2.
Cereb Cortex ; 30(3): 1559-1572, 2020 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-31504265

RESUMO

The muscarinic acetylcholine receptor antagonist scopolamine elicits rapid antidepressant activity, but its underlying mechanism is not fully understood. In a chronic stress model, a single low-dose administration of scopolamine reversed depressive-like reactivity. This antidepressant-like effect was mediated via a muscarinic M1 receptor-SKC pathway because it was mimicked by intra-medial prefrontal cortex (intra-mPFC) infusions of scopolamine, of the M1 antagonist pirenzepine or of the SKC antagonist apamin, but not by the selective serotonin reuptake inhibitor (SSRI) antidepressant fluoxetine. Extracellular and whole-cell recordings revealed that scopolamine and ketamine attenuate the SKC-mediated action potential hyperpolarization current and rapidly enhance mPFC neuronal excitability within the therapeutically relevant time window. The SKC agonist 1-EBIO abrogated scopolamine-induced antidepressant activity at a dose that completely suppressed burst firing activity. Scopolamine also induced a slow-onset activation of raphe serotonergic neurons, which in turn was dependent on mPFC-induced neuroplasticity or excitatory input, since mPFC transection abolished this effect. These early behavioral and mPFC activational effects of scopolamine did not appear to depend on prefrontocortical brain-derived neurotrophic factor and serotonin-1A activity, classically linked to SSRIs, and suggest a novel mechanism associated with antidepressant response onset through SKC-mediated regulation of activity-dependent plasticity.


Assuntos
Antidepressivos/farmacologia , Canais de Potássio Ativados por Cálcio de Condutância Baixa/efeitos dos fármacos , Canais de Potássio Ativados por Cálcio de Condutância Baixa/metabolismo , Estresse Fisiológico/efeitos dos fármacos , Potenciais de Ação/efeitos dos fármacos , Animais , Ketamina/farmacologia , Masculino , Córtex Pré-Frontal/efeitos dos fármacos , Córtex Pré-Frontal/metabolismo , Ratos Endogâmicos F344 , Escopolamina/farmacologia , Neurônios Serotoninérgicos/efeitos dos fármacos , Neurônios Serotoninérgicos/metabolismo , Serotonina/metabolismo , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Estresse Fisiológico/fisiologia
3.
Anal Chem ; 91(15): 9875-9884, 2019 08 06.
Artigo em Inglês | MEDLINE | ID: mdl-31265251

RESUMO

Brain metabolomics is an emerging field that complements the more traditional approaches of neuroscience. However, typical brain metabolomics workflows require that animals be sacrificed and tend to involve tedious sample preparation steps. Microdialysis, the standard technique to study brain metabolites in vivo, is encumbered by significant limitations in the analysis of hydrophobic metabolites, which are prone to adsorption losses on microdialysis equipment. An alternative sampling method suitable for in vivo brain studies is solid-phase microextraction (SPME). In SPME, a small probe coated with a biocompatible polymer is employed to extract/enrich analytes from biological matrices. In this work, we report the use of SPME and liquid chromatography-mass spectrometry for untargeted in vivo analysis of rodent's brains after deep brain stimulation (DBS). First, metabolite changes occurring in brain hippocampi after application of 3 h of DBS to the animals' prefrontal cortex were monitored with the proposed approach. As SPME allows for nonlethal sampling, the same group of animals was sampled again after 8 days of daily DBS therapy. After acute DBS, we detected changes in a broad range of metabolites, including the amino acid citrulline, which may reflect changes in nitric oxide production, as well as various phospho- and glycosphingolipids. Measurements conducted after chronic DBS showed a decrease in hippocampal corticosterone, indicating that DBS may have a regulatory effect in the hypothalamic-pituitary-adrenal axis. Our findings demonstrate the potential of in vivo SPME as a tool of scientific and clinical interest capable of revealing changes in a wide range of metabolites in brain tissue.


Assuntos
Encéfalo/metabolismo , Estimulação Encefálica Profunda , Metabolômica/métodos , Microextração em Fase Sólida/métodos , Animais , Hipocampo/metabolismo , Masculino , Ratos
4.
Neurobiol Dis ; 116: 166-178, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29727711

RESUMO

Some evidence suggests that the cerebellum modulates affect via connectivities with mood-regulating corticolimbic structures, such as the prefrontal cortex and monoamine nuclei. In rats exposed to chronic unpredictable stress (CUS), we examined the neuro-behavioural effects of high frequency stimulation and surgical ablation/disconnection of the cerebellar vermis. CUS reduced sucrose preference, increased novelty-induced feeding suppression and passive coping. These depressive-like behaviours were associated with decreased cerebellar zif268 expression, indicating possible cerebellar involvement in stress pathology. These were paralleled by decreased vermal Purkinje simple and complex spiking activity and raphe serotonergic activity. Protracted (24-h) vermal stimulation reversed these behavioural deficits through serotonin-mediated mechanisms since this effect was abrogated by the serotonin-depleting agent pCPA. Vermal stimulation and disconnection lesion also enhanced serotonergic activity, but did not modify prefrontocortical pyramidal firing. This effect was likely mediated by 5-HT1A receptors (5-HT1AR). Indeed, acute vermal stimulation mimicked the effect of the 5-HT1AR agonist 8-OH-DPAT in inhibiting serotonergic activity, which was prevented by pre-treatment with the 5-HT1AR antagonist WAY100,635. These results demonstrate vermal involvement in depressive-type behaviour via its modulatory action on serotonergic neurons. They further suggest that vermal and mPFC stimulation may bestow therapeutic benefits via parallel pathways.


Assuntos
Vermis Cerebelar/fisiologia , Estimulação Encefálica Profunda/métodos , Núcleo Dorsal da Rafe/fisiologia , Córtex Pré-Frontal/fisiologia , Estresse Psicológico/fisiopatologia , Estresse Psicológico/psicologia , Animais , Doença Crônica , Masculino , Ratos , Ratos Wistar , Estresse Psicológico/terapia
5.
Neuroimage ; 125: 422-427, 2016 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-26525655

RESUMO

BACKGROUND: Chronic high-frequency electrical deep brain stimulation (DBS) of the subcallosal cingulate region is currently being investigated clinically as a therapy for treatment of refractory depression. Experimental DBS of the homologous region, the ventromedial prefrontal cortex (VMPFC), in rodent models has previously demonstrated anti-depressant-like effects. Our goal was to determine if structural remodeling accompanies the alterations of brain function previously observed as a result of chronic DBS. METHODS: Here we applied 6h of high-frequency bilateral VMPFC DBS daily to 8 9-week old C57Bl/6 mice for 5days. We investigated the "micro-lesion" effect by using a sham stimulation group (8 mice) and a control group (8 mice with a hole drilled into the skull only). Whole brain anatomy was investigated post-mortem using high-resolution magnetic resonance imaging and areas demonstrating volumetric expansion were further investigated using histology and immunohistochemistry. RESULTS: The DBS group demonstrated bilateral increases in whole hippocampus and the left thalamus volume compared to both sham and control groups. Local hippocampal and thalamic volume increases were also observed at the voxel-level; however these increases were observed in both DBS and sham groups. Follow-up immunohistochemistry in the hippocampus revealed DBS increased blood vessel size and synaptic density relative to the control group whereas the sham group demonstrated increased astrocyte size. CONCLUSIONS: Our work demonstrates that DBS not only works by altering function with neural circuits, but also by structurally altering circuits at the cellular level. Neuroplastic alterations may play a role in mediating the clinical efficacy of DBS therapy.


Assuntos
Encéfalo/fisiologia , Estimulação Encefálica Profunda/métodos , Animais , Encéfalo/irrigação sanguínea , Processamento de Imagem Assistida por Computador , Imuno-Histoquímica , Imageamento por Ressonância Magnética , Masculino , Camundongos , Camundongos Endogâmicos C57BL
6.
J Neuroinflammation ; 12: 162, 2015 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-26337974

RESUMO

BACKGROUND: Status epilepticus (SE) is a severe condition that may lead to hippocampal cell loss and epileptogenesis. Some of the mechanisms associated with SE-induced cell death are excitotoxicity, neuroinflammation, and apoptosis. OBJECTIVE: The objective of the present study is to test the hypothesis that DBS has anti-inflammatory and antiapoptotic effects when applied during SE. METHODS: Rats undergoing pilocarpine-induced SE were treated with anterior thalamic nucleus (AN) deep brain stimulation (DBS). Inflammatory changes and caspase 3 activity were measured within 1 week of treatment. RESULTS: In pilocarpine-treated rats, DBS countered the significant increase in hippocampal caspase 3 activity and interleukin-6 (IL-6) levels that follows SE but had no effect on tumor necrosis factor α (TNFα). CONCLUSIONS: DBS has anti-inflammatory and antiapoptotic effects when given to animals undergoing status.


Assuntos
Apoptose/fisiologia , Estimulação Encefálica Profunda/métodos , Encefalite/etiologia , Encefalite/terapia , Estado Epiléptico/complicações , Análise de Variância , Animais , Apoptose/efeitos dos fármacos , Caspase 3/metabolismo , Citocinas/metabolismo , Modelos Animais de Doenças , Eletroencefalografia , Hipocampo/metabolismo , Masculino , Agonistas Muscarínicos , Pilocarpina/toxicidade , Ratos , Ratos Wistar , Estado Epiléptico/induzido quimicamente , Estado Epiléptico/patologia
7.
Synapse ; 69(12): 607-10, 2015 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26340045

RESUMO

Behavioral sensitization to various drugs of abuse has been shown to change dendritic spine density and/or morphology of nucleus accumbens (NAc) medium spiny neurons, an effect seen across drug classes. However, is it not known whether behavioral sensitization to ethanol (EtOH) is also associated with structural changes in this region. Here we compared dendritic spine density and morphology between mice showing High vs. Low levels of EtOH sensitization and found that high levels of EtOH sensitization were not associated with changes in dendritic spine density or spine type. Unexpectedly, however, a significant increase in the density of stubby-type spines was seen in mice that were resistant to sensitization. Since the presence of this spine type has been associated with long-term depression and cognitive/learning deficits this may explain why these mice fail to sensitize and why they show poor performance in conditioning tasks, as previously shown. A possible causal role for structural plasticity in behavioral sensitization to various drugs has been debated. In the case of EtOH sensitization, our results suggest that drug-induced changes in structural plasticity in the accumbens neurons may not be the cause of sensitized behavior.


Assuntos
Espinhas Dendríticas/efeitos dos fármacos , Etanol/farmacologia , Núcleo Accumbens/fisiologia , Animais , Camundongos , Núcleo Accumbens/citologia , Núcleo Accumbens/efeitos dos fármacos , Transmissão Sináptica/efeitos dos fármacos
8.
Behav Pharmacol ; 26(1-2): 184-92, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24642732

RESUMO

The behavioural effects of high-frequency electrical stimulation (HFS) are often similar to the effects of lesions, with the advantage of being reversible. The present study examined the effects of HFS of the nucleus accumbens (NAc), an area that has been shown to be important for sensitization to several psychostimulants, on the development and expression of EtOH sensitization. Male DBA/2 mice received five biweekly injections of EtOH (2.2 g/kg, intraperitoneally) or saline (SAL) immediately before assessments of locomotor activity (LMA). For some of the mice, each EtOH or SAL injection was preceded by 2 h of bilateral NAc HFS, whereas the remaining mice received no stimulation. Seven days after the last injection, LMA was again measured after the mice received a challenge dose of EtOH (1.8 g/kg, intraperitoneally) or SAL, either preceded or not preceded by 2 h of HFS. Mice receiving NAc HFS before EtOH injections during the sensitization period showed progressive increases in LMA that were not different from the LMA scores of EtOH-injected mice which had received no HFS. However, when the latter group was subsequently challenged after receiving HFS, a strong suppression of LMA was observed, in comparison with their own previous LMA scores (-72%) and compared with EtOH-sensitized groups challenged in the absence of HFS (-70%). A separate cohort of mice that were surgically implanted but not stimulated showed a robust EtOH sensitization response that did not differ from that of EtOH-treated mice without electrodes, demonstrating that HFS behavioural effects were not merely a result of the presence of electrodes in the NAc. These results suggest that NAc HFS may have different effects at different stages of the EtOH sensitization process, specifically suppressing expression, but not the development of EtOH sensitization. This pattern of distinct effects of NAc manipulations on different aspects of sensitization is similar to what has been reported for other drugs of abuse, suggesting a commonality of mechanisms. Our findings also suggest that the sensitization may provide a useful paradigm for the investigation of mechanisms of clinical effectiveness of HFS in humans.


Assuntos
Estimulação Elétrica/efeitos adversos , Etanol/farmacologia , Atividade Motora/efeitos dos fármacos , Núcleo Accumbens/efeitos dos fármacos , Animais , Comportamento Animal/efeitos dos fármacos , Etanol/administração & dosagem , Masculino , Camundongos , Camundongos Endogâmicos DBA , Núcleo Accumbens/metabolismo
9.
Neurobiol Dis ; 71: 205-14, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25131446

RESUMO

Recent studies in patients with treatment-resistant depression have shown similar results with the use of deep brain stimulation (DBS) in the subcallosal cingulate gyrus (SCG), ventral capsule/ventral striatum (VC/VS) and nucleus accumbens (Acb). As these brain regions are interconnected, one hypothesis is that by stimulating these targets one would just be influencing different relays in the same circuitry. We investigate behavioral, immediate early gene expression, and functional connectivity changes in rats given DBS in homologous regions, namely the ventromedial prefrontal cortex (vmPFC), white matter fibers of the frontal region (WMF) and nucleus accumbens. We found that DBS delivered to the vmPFC, Acb but not WMF induced significant antidepressant-like effects in the FST (31%, 44%, and 17% reduction in immobility compared to controls). Despite these findings, stimulation applied to these three targets induced distinct patterns of regional activity and functional connectivity. While animals given vmPFC DBS had increased cortical zif268 expression, changes after Acb stimulation were primarily observed in subcortical structures. In animals receiving WMF DBS, both cortical and subcortical structures at a distance from the target were influenced by stimulation. In regard to functional connectivity, DBS in all targets decreased intercorrelations among cortical areas. This is in contrast to the clear differences observed in subcortical connectivity, which was reduced after vmPFC DBS but increased in rats receiving Acb or WMF stimulation. In conclusion, results from our study suggest that, despite similar antidepressant-like effects, stimulation of the vmPFC, WMF and Acb induces distinct changes in regional brain activity and functional connectivity.


Assuntos
Encéfalo/anatomia & histologia , Encéfalo/fisiologia , Estimulação Encefálica Profunda/métodos , Depressão/terapia , Rede Nervosa/fisiologia , Análise de Variância , Animais , Simulação por Computador , Modelos Animais de Doenças , Proteína 1 de Resposta de Crescimento Precoce/genética , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Comportamento Exploratório , Regulação da Expressão Gênica/fisiologia , Masculino , Modelos Neurológicos , Ratos , Ratos Sprague-Dawley , Natação/psicologia , Fatores de Tempo
10.
Int J Neuropsychopharmacol ; 17(8): 1129-38, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24524273

RESUMO

Although the effects of haloperidol (HAL) have been extensively examined in experimental animals at the cellular and brain regional levels, the effects of prolonged HAL treatment on functional connectivity in the brain have not yet been addressed. Here we used expression of the immediate early gene zif268 as a marker of neural activity to examine changes in brain regional interactivity after 12 wk of HAL treatment in rats. zif268 expression was measured by in situ hybridization in 83 brain regions of HAL- and vehicle (VEH)-treated controls and correlations among all brain regions were computed separately for the two treatment groups. The strongest correlations in each group were used for network construction. It was found that VEH and HAL networks were equally segregated and integrated, and that both networks display small world organization. Compared to the VEH network, the HAL network showed enhanced interactivity between the dorsolateral striatum and thalamus, and between different subdivisions of the thalamus. It will be of interest to determine the extent to which the observed changes in functional connectivity may be related to dyskinesias, to changes in motivated behaviours and/or to the therapeutic effects of chronic HAL. By identifying the connectivity features of a chronic HAL network in the absence of other manipulations, the current findings may provide a reference signature pattern to be targeted in future efforts to discriminate between the neural bases of different behavioural outcomes arising from chronic HAL treatment.


Assuntos
Encéfalo/efeitos dos fármacos , Encéfalo/fisiologia , Haloperidol/farmacologia , Vias Neurais/efeitos dos fármacos , Tálamo/fisiologia , Animais , Antipsicóticos/farmacologia , Biomarcadores/metabolismo , Encéfalo/metabolismo , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Corpo Estriado/fisiologia , Proteína 1 de Resposta de Crescimento Precoce/biossíntese , Haloperidol/administração & dosagem , Masculino , Vias Neurais/fisiologia , Ratos , Tálamo/efeitos dos fármacos , Tálamo/metabolismo
11.
J Neurosci ; 32(28): 9574-81, 2012 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-22787043

RESUMO

Mechanisms whereby deep brain stimulation (DBS) of the subthalamic nucleus (STN) or internal globus pallidus (GPi) reduces dyskinesias remain largely unknown. Using vacuous chewing movements (VCMs) induced by chronic haloperidol as a model of tardive dyskinesia (TD) in rats, we confirmed the antidyskinetic effects of DBS applied to the STN or entopeduncular nucleus (EPN, the rodent homolog of the GPi). We conducted a series of experiments to investigate the role of serotonin (5-HT) in these effects. We found that neurotoxic lesions of the dorsal raphe nuclei (DRN) significantly decreased HAL-induced VCMs. Acute 8-OH-DPAT administration, under conditions known to suppress raphe neuronal firing, also reduced VCMs. Immediate early gene mapping using zif268 in situ hybridization revealed that STN-DBS inhibited activity of DRN and MRN neurons. Microdialysis experiments indicated that STN-DBS decreased 5-HT release in the dorsolateral caudate-putamen, an area implicated in the etiology of HAL-induced VCMs. DBS applied to the EPN also suppressed VCMs but did not alter 5-HT release or raphe neuron activation. While these findings suggested a role for decreased 5-HT release in the mechanisms of STN DBS, further microdialysis experiments showed that when the 5-HT lowering effects of STN DBS were prevented by pretreatment with fluoxetine or fenfluramine, the ability of DBS to suppress VCMs remained unaltered. These results suggest that EPN- and STN-DBS have different effects on the 5-HT system. While decreasing 5-HT function is sufficient to suppress HAL-induced VCMs, 5-HT decrease is not necessary for the beneficial motor effects of DBS in this model.


Assuntos
Estimulação Encefálica Profunda/métodos , Núcleo Entopeduncular/fisiologia , Transtornos dos Movimentos/terapia , Serotonina/metabolismo , Núcleo Subtalâmico/fisiologia , 5,7-Di-Hidroxitriptamina/toxicidade , Anfetaminas/uso terapêutico , Análise de Variância , Animais , Antipsicóticos/toxicidade , Autorradiografia , Benzilaminas/farmacocinética , Isótopos de Carbono/farmacocinética , Cromatografia Líquida de Alta Pressão/métodos , Modelos Animais de Doenças , Técnicas Eletroquímicas , Comportamento Exploratório/efeitos dos fármacos , Comportamento Exploratório/fisiologia , Fluoxetina/uso terapêutico , Haloperidol/toxicidade , Ácido Hidroxi-Indolacético/metabolismo , Masculino , Mastigação/efeitos dos fármacos , Mastigação/fisiologia , Microdiálise , Transtornos dos Movimentos/etiologia , Ligação Proteica/efeitos dos fármacos , Ratos , Ratos Sprague-Dawley , Serotoninérgicos/toxicidade , Agonistas do Receptor de Serotonina/uso terapêutico , Inibidores Seletivos de Recaptação de Serotonina/uso terapêutico
12.
Rev Neurosci ; 24(2): 153-66, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23399586

RESUMO

Treatment with the classic antipsychotic drugs (APDs), such as haloperidol (HAL), is associated with both acute and chronic motor side effects. Acutely, these drugs may induce extrapyramidal symptoms, whereas a prolonged treatment may result in tardive dyskinesia (TD). Atypical antipsychotics have a lower incidence of motor side effects, which have been partially ascribed to the antagonism of serotonin (5-HT) receptors. Although there is currently no satisfactory pharmacotherapy for TD, deep brain stimulation (DBS) has emerged as a promising therapy. However, the mechanisms underlying its effects remain largely unknown. DBS has been shown to affect several neurotransmitter systems, including 5-HT. In this review, we outline the involvement of 5-HT in the development of HAL-induced catalepsy and TD. We also discuss the evidence for DBS-induced alterations in 5-HT function and the relevance of serotonergic alterations to the antidyskinetic effects of DBS. The evidence suggests that the serotonergic mechanisms may be involved in the acute and chronic motor side effects of APDs as well as in adverse psychiatric effects that have been reported following DBS. However, the current evidence suggests that 5-HT alterations do not play an important role in the effectiveness of DBS in models of dyskinesias induced by chronic APDs.


Assuntos
Estimulação Encefálica Profunda , Transtornos dos Movimentos/terapia , Serotonina/metabolismo , Antipsicóticos/efeitos adversos , Humanos
13.
J Psychopharmacol ; 36(9): 1070-1076, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36112867

RESUMO

BACKGROUND: A new cell-based serum anticholinergic activity (cSAA) assay that measures anticholinergic activity specifically at muscarinic M1 receptors and eliminates many of the drawbacks of the existing assay was developed by our team. AIMS: We aimed to study the relationship between changes in working memory and executive function with changes in cSAA using the new assay in cognitively healthy older adults. METHODS: Cognitively healthy participants aged 50 years and above, received a single dose of 0.4 mg of intravenous scopolamine. Cognition and cSAA levels were measured before and 30 min after receiving scopolamine. Cognition was measured using the Cambridge Neuropsychological Test Automated Battery. RESULTS: Ten participants were recruited, and nine (mean age = 69.8, SD = 9.5, range 59-86 years) completed the study. Following scopolamine, participants experienced an increase in cSAA (cSAA pre = 0.90 ± 0.97 vs cSAA post = 12.0 ± 3.70 pmol/L; t-test (df = (8) = -9.5, p < 0.001). In addition, there was an association between change in cSAA and changes in working memory (Spearman's ρ = 0.68, p = 0.042) and executive function (Spearman's ρ = 0.72, p = 0.027). CONCLUSIONS: In our sample of cognitively healthy older adults, the new cSAA assay was able to quantify the scopolamine induced increase in anticholinergic load which correlated significantly with the observed decline in working memory and executive function.


Assuntos
Antagonistas Colinérgicos , Escopolamina , Idoso , Idoso de 80 Anos ou mais , Antagonistas Colinérgicos/efeitos adversos , Cognição , Humanos , Memória de Curto Prazo , Pessoa de Meia-Idade , Testes Neuropsicológicos , Receptor Muscarínico M1 , Escopolamina/farmacologia
14.
Psychopharmacology (Berl) ; 239(1): 253-266, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34982171

RESUMO

RATIONALE: The voltage-insensitive, small-conductance calcium-activated potassium (SK) channel is a key regulator of neuronal depolarization and is implicated in the pathophysiology of depressive disorders. OBJECTIVE: We ascertained whether the SK channel is impaired in the chronic unpredictable stress (CUS) model and whether it can serve as a molecular target of antidepressant action. METHODS: We assessed the depressive-like behavioral phenotype of CUS-exposed rats and performed post-mortem SK channel binding and activity-dependent zif268 mRNA analyses on their brains. To begin an assessment of SK channel subtypes involved, we examined the effects of genetic and pharmacological inhibition of the SK3 channel using conditional knockout mice and selective SK3 channel negative allosteric modulators (NAMs). RESULTS: We found that [125I]apamin binding to SK channels is increased in the prefrontal cortex and decreased in the hippocampus, an effect that was associated with reciprocal levels of zif268 mRNA transcripts indicating abnormal regional cell activity in this model. We found that genetic and pharmacological manipulations significantly decreased immobility in the forced swim test without altering general locomotor activity, a hallmark of antidepressant-like activity. CONCLUSIONS: Taken together, these findings link depression-related neural and behavioral pathophysiology with abnormal SK channel functioning and suggest that this can be reversed by the selective inhibition of SK3 channels.


Assuntos
Neurônios , Canais de Potássio Ativados por Cálcio de Condutância Baixa , Animais , Antidepressivos/farmacologia , Apamina , Cálcio/metabolismo , Camundongos , Neurônios/metabolismo , Ratos , Canais de Potássio Ativados por Cálcio de Condutância Baixa/genética
15.
Int J Neuropsychopharmacol ; 14(9): 1165-78, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21087552

RESUMO

While dopamine D2 receptor partial agonists (PAs) have been long considered for treating schizophrenia, only one, aripiprazole, is clinically available for therapeutic use. This raises critically important questions as to what is unique about aripiprazole and to what extent animal models can predict therapeutic success. A number of PAs whose clinical fate is known: aripiprazole, preclamol, terguride, OPC-4392 and bifeprunox were compared to haloperidol (a reference antipsychotic) in several convergent preclinical animal models; i.e. amphetamine-induced locomotion (AIL) and conditioned avoidance response (CAR), predictive of antipsychotic effects; unilateral nigrostriatal lesioned rats, a model of hypo-dopaminergia; striatal Fos induction, a molecular marker for antipsychotic activity; and side-effects common to this class of drugs: catalepsy (motor side-effects) and prolactaemia. The results were compared across drugs with reference to their measured striatal D2 receptor occupancy. All the PAs occupied striatal D2 receptors in a dose dependent manner, inhibited AIL and CAR, and lacked motor side-effects or prolactinaemia despite D2 receptor occupancy exceeding 80%. At comparative doses, aripiprazole distinguished itself from the other PAs by causing the least rotation in the hypo-dopaminergic model (indicating the least intrinsic activity) and showed the highest Fos expression in the nucleus accumbens (indicating functional D2 antagonism). Although a number of PAs are active in antipsychotic animal models, not all of them succeed. Given that only aripiprazole is clinically available, it can be inferred that low functional intrinsic activity coupled with sufficient functional antagonism as reflected in the animal models may be a marker of success.


Assuntos
Antipsicóticos/uso terapêutico , Agonistas de Dopamina/uso terapêutico , Receptores de Dopamina D2/agonistas , Esquizofrenia/tratamento farmacológico , Animais , Antipsicóticos/administração & dosagem , Antipsicóticos/efeitos adversos , Antipsicóticos/metabolismo , Aripiprazol , Aprendizagem da Esquiva/efeitos dos fármacos , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Corpo Estriado/patologia , Agonistas de Dopamina/administração & dosagem , Agonistas de Dopamina/efeitos adversos , Agonistas de Dopamina/metabolismo , Antagonistas de Dopamina/administração & dosagem , Antagonistas de Dopamina/efeitos adversos , Antagonistas de Dopamina/metabolismo , Antagonistas de Dopamina/uso terapêutico , Antagonistas dos Receptores de Dopamina D2 , Relação Dose-Resposta a Droga , Avaliação Pré-Clínica de Medicamentos , Imuno-Histoquímica , Locomoção/efeitos dos fármacos , Masculino , Proteínas do Tecido Nervoso/agonistas , Proteínas do Tecido Nervoso/antagonistas & inibidores , Proteínas do Tecido Nervoso/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Núcleo Accumbens/efeitos dos fármacos , Núcleo Accumbens/metabolismo , Núcleo Accumbens/patologia , Piperazinas/administração & dosagem , Piperazinas/efeitos adversos , Piperazinas/metabolismo , Piperazinas/uso terapêutico , Proteínas Proto-Oncogênicas c-fos/metabolismo , Quinolonas/administração & dosagem , Quinolonas/efeitos adversos , Quinolonas/metabolismo , Quinolonas/uso terapêutico , Ratos , Ratos Sprague-Dawley , Receptores de Dopamina D2/metabolismo
16.
J Pharmacol Toxicol Methods ; 112: 107118, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34481920

RESUMO

A new approach is described for quantifying cholinergic receptor activation status human blood samples, based on M1 receptor-driven mobilization of intracellular calcium stores. The assay identifies anticholinergic as well as agonist cholinergic receptor activity. As a cell-based procedure, the assay shares the high efficiency of recently developed M1 receptor binding protocols, but differs from the latter in relying on fluorescence rather than radioactivity measurements. The assay targets a true functional effect insofar as it reflects a time-dependent process of net changes in activation of cholinergic receptors. Results from experiments with M1-expressing CHO cells exposed to a fluorogenic dye and the standard cholinergic agonist carbachol revealed the assay's ability to isolate pure agonist effects of clinical compounds as well as the net effects of serum containing agonist and antagonist factors. The new protocol thus provides two additional quantitative indices of cholinergic receptor activity in human serum, namely pure agonistic effects and net agonist/antagonist effects. As such, it could constitute a very useful addition to efforts to quantify global cholinergic status in human serum in various clinical conditions. By relying on fluorescence measures it should also prove much more accessible than radioactivity-based protocols.


Assuntos
Cálcio , Fluorometria , Preparações Farmacêuticas , Radioatividade , Receptores Colinérgicos , Animais , Cricetinae , Cricetulus , Fluorescência , Humanos , Preparações Farmacêuticas/análise , Farmacocinética , Receptor Muscarínico M1 , Receptores Colinérgicos/análise
17.
Psychiatr Genet ; 31(2): 65-71, 2021 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-33399315

RESUMO

Suicidal behavior is influenced by many risk factors such as childhood trauma, stressful life events, genetic factors, and severe mental illnesses. Suicidal ideation is present in 50% of schizophrenia patients and is associated with an elevated risk of suicide attempt. Studies have shown that epigenetic mechanisms are associated with suicidal behavior in schizophrenia. Although several studies have suggested the importance of epigenetic factors in suicidal ideation and behavior, no studies have investigated global methylation in association with these two phenotypes. This study investigated global methylation level/change in association with current and emergent suicidal ideation and also with suicide attempt. Forty-seven schizophrenia patients were assessed for the association between global methylation and suicide attempt, and a subsample of these patients (n = 27) was assessed for current suicidal ideation. Afterwards, we performed a longitudinal analysis in which global methylation changes during a 3-month follow-up were compared between patients with and without emergent suicidal ideation. This methylation analysis did not find evidence for a significant association between global methylation and suicidal ideation or suicide attempt. To date, there are no robust biomarkers predicting suicidal ideation or behavior in psychotic patients. This study is the first to investigate global methylation in predicting suicidal ideation and behavior. Although we did not find evidence for an association between global methylation and these phenotypes, our findings may offer novel insights into the molecular mechanisms linked to suicide. Future investigation may measure global methylation in association with suicidal ideation or behavior in larger samples.


Assuntos
Metilação de DNA , Esquizofrenia/genética , Psicologia do Esquizofrênico , Ideação Suicida , Tentativa de Suicídio , Adulto , Estudos Transversais , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Fatores de Risco
18.
J Psychopharmacol ; 35(8): 1003-1016, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-33908307

RESUMO

BACKGROUND: Antidepressant drugs in adolescent depression are sometimes mired by efficacy issues and paradoxical effects. Transcranial direct current stimulation (tDCS) could represent an alternative. AIMS/METHODS: We tested the antidepressant action of prefrontal tDCS and paroxetine (20 mg/kg, intraperitoneal) in olfactory bulbectomised (OBX) adolescent rats. Using enzyme-linked immunosorbent assays and in situ hybridisation, we examined treatment-induced changes in plasma brain-derived neurotrophic factor (BDNF) and brain serotonin transporter (SERT) and 5-HT-1A mRNA. RESULTS: OBX-induced anhedonia-like reductions in sucrose preference (SP) correlated with open field (OF) hyperactivity. These were accompanied by decreased zif268 mRNA in the piriform/amygdalopiriform transition area, and increased zif268 mRNA in the hypothalamus. Acute paroxetine (2 days) led to a profound SP reduction, an effect blocked by combined tDCS-paroxetine administration. Chronic (14 days) tDCS attenuated hyperlocomotion and its combination with paroxetine blocked OBX-induced SP reduction. Correlations among BDNF, SP and hyperlocomotion scores were altered by OBX but were normalised by tDCS-paroxetine co-treatment. In the brain, paroxetine increased zif268 mRNA in the hippocampal CA1 subregion and decreased it in the claustrum. This effect was blocked by tDCS co-administration, which also increased zif268 in CA2. tDCS-paroxetine co-treatment had variable effects on 5-HT1A receptors and SERT mRNA. 5-HT1A receptor changes were found exclusively within depression-related parahippocampal/hippocampal subregions, and SERT changes within fear/defensive response-modulating brainstem circuits. CONCLUSION: These findings point towards potential synergistic efficacies of tDCS and paroxetine in the OBX model of adolescent depression via mechanisms associated with altered expression of BDNF, 5-HT1A, SERT and zif268 in discrete corticolimbic areas.


Assuntos
Depressão/terapia , Paroxetina/farmacologia , Inibidores Seletivos de Recaptação de Serotonina/farmacologia , Estimulação Transcraniana por Corrente Contínua/métodos , Animais , Fator Neurotrófico Derivado do Encéfalo/sangue , Terapia Combinada , Depressão/fisiopatologia , Modelos Animais de Doenças , Masculino , Bulbo Olfatório/cirurgia , Paroxetina/administração & dosagem , RNA Mensageiro/metabolismo , Ratos , Ratos Sprague-Dawley , Receptor 5-HT1A de Serotonina/genética , Proteínas da Membrana Plasmática de Transporte de Serotonina/metabolismo , Inibidores Seletivos de Recaptação de Serotonina/administração & dosagem
19.
Eur J Neurosci ; 32(7): 1109-17, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21039950

RESUMO

Deep brain stimulation (DBS) is currently being investigated as a therapy for the treatment of depression. Despite promising results of recent clinical trials, neural and chemical mechanisms responsible for the effects of stimulation are still unclear. In this article, we review clinical and laboratory findings on DBS for depression. Particular emphasis will be given to aspects involved in the translation of data from animal models to humans and in our findings on the potential substrates involved in the antidepressant effects of DBS in rats.


Assuntos
Ensaios Clínicos como Assunto/métodos , Estimulação Encefálica Profunda/métodos , Depressão/terapia , Modelos Animais de Doenças , Animais , Antidepressivos/farmacologia , Antidepressivos/uso terapêutico , Encéfalo/efeitos dos fármacos , Encéfalo/patologia , Encéfalo/fisiologia , Catecolaminas/metabolismo , Depressão/patologia , Humanos , Vias Neurais/patologia , Natação/psicologia
20.
Neuropsychopharmacology ; 45(5): 811-822, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31905371

RESUMO

Gambling disorder (GD) is a behavioral addiction that may be linked to alterations in dopamine (DA) systems. Gambling involves chronic exposure to uncertain reward, which can sensitize the activity of DA systems. Here we explored how combinations of Pavlovian and instrumental uncertainty impact DA sensitization and risky decision-making. Experiment 1: 40 rats underwent 66 uncertainty exposure (UE) sessions during which they responded for saccharin. Animal responding was reinforced according to a fixed or variable (FR/VR) ratio schedule that turned on a conditioned stimulus (CS; light), which predicted saccharin on 50% or 100% of trials. Animals responded under one of the four conditions: FR-CS100% (no uncertainty), VR-CS100%, FR-CS50%, and VR-CS50% (maximal uncertainty). DA sensitization was inferred from an enhanced locomotor response to d-amphetamine (d-AMPH; 0.5 mg/kg) challenge. The rat gambling task (rGT) was used to assess decision-making. Experiment 2: 24 rats received 5 weeks of sensitizing d-AMPH or saline doses, followed by locomotor activity and rGT testing. Experiment 3: Effects of UE and a sensitizing d-AMPH regimen on DA D1, D2, and D3 receptor binding were assessed in 44 rats using autoradiography. Compared to FR-CS100%, VR-CS100% and VR-CS50% rats displayed a greater locomotor response to d-AMPH, and VR-CS50% rats demonstrated riskier decision-making. Chronic d-AMPH-treated rats mirrored the effects of VR-CS50% groups on these two indices. Both VR-CS50% and d-AMPH-treated groups had increased striatal DA D2 receptor binding. These results suggest that chronic uncertainty exposure, similar to exposure to a sensitizing d-AMPH regimen, sensitized the function of DA systems and increased risky decision-making.


Assuntos
Tomada de Decisões/fisiologia , Dextroanfetamina/administração & dosagem , Inibidores da Captação de Dopamina/administração & dosagem , Locomoção/fisiologia , Receptores Dopaminérgicos/fisiologia , Recompensa , Incerteza , Animais , Condicionamento Psicológico/efeitos dos fármacos , Condicionamento Psicológico/fisiologia , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Tomada de Decisões/efeitos dos fármacos , Jogo de Azar/fisiopatologia , Locomoção/efeitos dos fármacos , Masculino , Ratos Sprague-Dawley , Assunção de Riscos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA