Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Artigo em Inglês | MEDLINE | ID: mdl-33318020

RESUMO

We characterized a multidrug-resistant (MDR) Enterobacter spp. isolate highlighting the genetic aspects of the antimicrobial resistance genes. An Enterobacter spp. isolate (Ec61) was recovered in 2014 from a transtracheal aspirate sample from a patient admitted to a Brazilian tertiary hospital and submitted to further microbiological and genomic characterization. Ec61 was identified as Enterobacter hormaechei subsp. xiangfangensis strain ST451, showing an MDR profile and the presence of genes codifying the new ß-lactamase variants BKC-2 and ACT-84 and the mobile colistin resistance gene mcr-9.1.


Assuntos
Colistina , Enterobacter , Antibacterianos/farmacologia , Brasil , Colistina/farmacologia , Enterobacter/genética , Humanos , Plasmídeos , beta-Lactamases/genética
2.
J Antimicrob Chemother ; 75(1): 36-45, 2020 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-31586422

RESUMO

OBJECTIVES: To verify dissemination of daptomycin-non-susceptible Enterococcus faecium in a hospital where daptomycin was not in use and to understand the evolutionary pathways connecting daptomycin hypersusceptibility to non-susceptibility. METHODS: Clonality of 26 E. faecium was assessed by PFGE and the STs of these isolates were determined. The most daptomycin-susceptible isolate was evolved in vitro by stepwise daptomycin selection, generating isolates for genome comparisons. RESULTS: The spread of a high-risk daptomycin-non-susceptible VRE clone was detected, as was the occurrence of an unusual daptomycin-hypersusceptible strain (HBSJRP18). To determine the basis for daptomycin hypersusceptibility, we evolved HBSJRP18 in vitro and identified candidate genetic alterations potentially related to daptomycin susceptibility. Both lafB, encoding glycosyltransferase, which is putatively involved in lipoteichoic acid (LTA) biosynthesis, and dak, encoding a dihydroxyacetone kinase likely involved in fatty acid metabolism, were mutated in multiple independent experiments. Trans-complementation showed that the lafB polymorphism naturally occurring in HBSJRP18 caused its daptomycin hypersusceptibility. Fourier-transform infrared spectroscopy identified differences between the extracted LTA spectra from the hypersusceptible isolate and its revertant, as well as other non-susceptible variants, supporting a role for LafB in E. faecium LTA biosynthesis. Zeta potential difference was detected in one evolved dak mutant derivative. While much more susceptible to daptomycin, HBSJRP18 showed enhanced growth in the presence of piperacillin, suggesting that this, or another cell wall-targeting antibiotic, may have selected for the daptomycin-hypersusceptible phenotype. CONCLUSIONS: Our findings provide new information on the basis for daptomycin susceptibility in E. faecium, with implications for limiting the development and spread of daptomycin resistance.


Assuntos
Antibacterianos/farmacologia , Daptomicina/farmacologia , Enterococcus faecium/efeitos dos fármacos , Enterococcus faecium/genética , Variação Genética , Glicosiltransferases/genética , Proteínas de Bactérias/genética , Farmacorresistência Bacteriana/genética , Genoma Bacteriano , Infecções por Bactérias Gram-Positivas/microbiologia , Humanos , Testes de Sensibilidade Microbiana , Mutação , Polimorfismo Genético
3.
J Glob Antimicrob Resist ; 39: 3-5, 2024 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-39117141

RESUMO

OBJECTIVES: Klebsiella spp. are leading causes of nosocomial infections. Their ability to harbour antimicrobial resistance genes makes them an important public health threat. This study aimed to report the genomic background of carbapenemase-producing Klebsiella quasipneumoniae (HV55B) and Klebsiella michiganensis (HV55D) strains isolated from fresh vegetables destined for hospitalized inpatients. METHODS: Microbiological and molecular methods were used to isolate and identify the strains, which were submitted to the antimicrobial susceptibility test and pH tolerance assays. Whole genome sequencing was performed on MiSeq and NextSeq platforms, and online available tools were applied to bioinformatic analysis of clinically relevant information. RESULTS: Both isolates were considered multidrug-resistant and tolerated pH ≥ 4 for 24 h. HV55B belonged to sequence type (ST) ST668, and presented a broad resistome and plasmids from four incompatibility groups. HV55D belonged to ST40. Both strains HV55B and HV55D were genetically close to isolates responsible for human infections around the world, which stands for the plausibility of such bacteria to cause disease in patients of the studied institution. CONCLUSIONS: Our results confirm the presence of carbapenemase-producing Klebsiella spp. in fresh foodstuffs intended for hospitalized inpatients' consumption. The genomes characterized here also provide clinically and genomically relevant information to forthcoming epidemiological surveillance studies.

4.
Antibiotics (Basel) ; 12(4)2023 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-37107119

RESUMO

Resistant bacteria may kill more people than COVID-19, so the development of new antibacterials is essential, especially against microbial biofilms that are reservoirs of resistant cells. Silver nanoparticles (bioAgNP), biogenically synthesized using Fusarium oxysporum, combined with oregano derivatives, present a strategic antibacterial mechanism and prevent the emergence of resistance against planktonic microorganisms. Antibiofilm activity of four binary combinations was tested against enteroaggregative Escherichia coli (EAEC) and Klebsiella pneumoniae carbapenemase-producing K. pneumoniae (KPC): oregano essential oil (OEO) plus bioAgNP, carvacrol (Car) plus bioAgNP, thymol (Thy) plus bioAgNP, and Car plus Thy. The antibiofilm effect was accessed using crystal violet, MTT, scanning electron microscopy, and Chromobacterium violaceum anti-quorum-sensing assays. All binary combinations acted against preformed biofilm and prevented its formation; they showed improved antibiofilm activity compared to antimicrobials individually by reducing sessile minimal inhibitory concentration up to 87.5% or further decreasing biofilm metabolic activity and total biomass. Thy plus bioAgNP extensively inhibited the growth of biofilm in polystyrene and glass surfaces, disrupted three-dimensional biofilm structure, and quorum-sensing inhibition may be involved in its antibiofilm activity. For the first time, it is shown that bioAgNP combined with oregano has antibiofilm effect against bacteria for which antimicrobials are urgently needed, such as KPC.

5.
Diagn Microbiol Infect Dis ; 106(2): 115932, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37023592

RESUMO

Carbapenemase-producing Klebsiella pneumoniae (CPKp) infections are important threats to pediatric populations. Thus, a retrospective study was conducted in a Brazilian reference pediatric hospital, and 26 CPKp isolates obtained from 23 patients were characterized. The affected population had important underlying diseases, reflecting previous hospitalization and antibiotic use. Most CPKp isolates were resistant to all antibiotic classes, and blaKPC-2 was the only carbapenemase-encoding gene. blaCTX-M-15 was common among the isolates, and modification or absence of the mgrB gene was the cause of polymyxin B resistance. Ten different sequence types were identified, and clonal complex 258 was prevalent. Alleles wzi50 and wzi64 were the most recurrent ones regarding K-locus type, with a remarkable contribution of the epidemic ST11/KL64 lineage as a colonizer. Our findings show that lineages associated with the pediatric population are similar to those found in adults, reinforcing the need for epidemiological surveillance to effectively implement prevention and control measures.


Assuntos
Enterobacteriáceas Resistentes a Carbapenêmicos , Infecções por Klebsiella , beta-Lactamases , Adulto , Criança , Humanos , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , beta-Lactamases/genética , Brasil/epidemiologia , Hospitais Pediátricos , Infecções por Klebsiella/epidemiologia , Klebsiella pneumoniae/enzimologia , Klebsiella pneumoniae/genética , Testes de Sensibilidade Microbiana , Tipagem de Sequências Multilocus , Estudos Retrospectivos
6.
J Glob Antimicrob Resist ; 9: 124-125, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28559168

RESUMO

Escherichia coli, the main host of the CTX-M-15 extended-spectrum ß-lactamase (ESBL) enzyme, is widely distributed and exchanged between the environment, animals and humans. Therefore, identification of blaCTX-M-15-positive lineages in food has a significant impact on public health. In this regard, until the end of 1990s, ESBL-producing isolates were mainly associated with hospital-acquired infections, with a predominance of SHV- and TEM-type enzymes. In recent years, a new trend has been observed among ESBL-producers, where most isolates now harbour CTX-M-type, being further isolated from community-acquired infections. Nowadays, CTX-M-15 has been recognised as the most important ESBL variant, invading virtually all human and animal compartments, leading to a global pandemic. Thus, whilst the rapid emergence and dissemination of CTX-M-15 among E. coli isolates has generated a large genetic reservoir from which other members of the Enterobacteriaceae family can easily acquire this resistance gene, there are an increasing number of new reservoirs and transmission mechanisms that must be investigated. In this study, we present the draft genome sequence of a CTX-M-15-producing E. coli ST345 isolated from commercial chicken meat in Brazil. This draft genome can be used as a reference sequence for comparative analysis among CTX-M-15-producers.


Assuntos
Escherichia coli/genética , Escherichia coli/isolamento & purificação , Genoma Bacteriano , Carne/microbiologia , Análise de Sequência de DNA , Sequenciamento Completo do Genoma , beta-Lactamases/metabolismo , Animais , Brasil , Galinhas , Farmacorresistência Bacteriana , Escherichia coli/enzimologia , Genes Bacterianos , Anotação de Sequência Molecular
7.
J Food Prot ; 66(9): 1595-8, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-14503711

RESUMO

The survival of Escherichia coli O157:H7, Listeria monocytogenes, and Salmonella was studied in apple, orange, pineapple, and white grape juice concentrates and banana puree. Pouches of juice concentrate or puree were inoculated with pathogens at a level > or = 10(3) CFU/g and stored at -23 degrees C (-10 degrees F). Pathogen survival was monitored at 6 and 24 h, once a week for four consecutive weeks, and biweekly thereafter until 12 weeks. When pathogens were not detectable by direct plating, samples were enriched in universal preenrichment broth for 72 h and plated on selective media. Results showed that E. coli O157:H7, L. monocytogenes, and Salmonella were recoverable from all five concentrates through 12 weeks of storage at -23 degrees C.


Assuntos
Bebidas/microbiologia , Escherichia coli O157/crescimento & desenvolvimento , Frutas , Listeria monocytogenes/crescimento & desenvolvimento , Salmonella/crescimento & desenvolvimento , Contagem de Colônia Microbiana , Manipulação de Alimentos/métodos , Microbiologia de Alimentos , Conservação de Alimentos , Temperatura , Fatores de Tempo
8.
J Food Prot ; 66(9): 1637-41, 2003 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-14503718

RESUMO

The production of thermally concentrated fruit juices uses temperatures high enough to achieve at least a 5-log reduction of pathogenic bacteria that can occur in raw juice. However, the transportation and storage of concentrates at low temperatures prior to final packaging is a common practice in the juice industry and introduces a potential risk for postconcentration contamination with pathogenic bacteria. The present study was undertaken to evaluate the likelihood of Escherichia coli O157:H7, Listeria monocytogenes and Salmonella surviving in cranberry, lemon, and lime juice concentrates at or above temperatures commonly used for transportation or storage of these concentrates. This study demonstrates that cranberry, lemon, and lime juice concentrates possess intrinsic antimicrobial properties that will eliminate these bacterial pathogens in the event of postconcentration recontamination. Bacterial inactivation was demonstrated under all conditions; at least 5-log Salmonella inactivation was consistently demonstrated at -23 degrees C (-10 degrees F), at least 5-log E. coli O157:H7 inactivation was consistently demonstrated at -11 degrees C (12 degrees F), and at least 5-log L. monocytogenes inactivation was consistently demonstrated at 0 degrees C (32 degrees F).


Assuntos
Bebidas/microbiologia , Escherichia coli O157/crescimento & desenvolvimento , Manipulação de Alimentos/métodos , Frutas , Listeria monocytogenes/crescimento & desenvolvimento , Salmonella/crescimento & desenvolvimento , Contagem de Colônia Microbiana , Microbiologia de Alimentos , Temperatura Alta , Temperatura , Fatores de Tempo
9.
J AOAC Int ; 87(6): 1480-4, 2004.
Artigo em Inglês | MEDLINE | ID: mdl-15675462

RESUMO

Peanut is the food group mostly associated with severe and fatal allergic reactions. In the United States, more than 90% of peanut-allergic individuals' serum IgE recognized peanut proteins Ara h 1 and Ara h 2, thus establishing these proteins as major peanut allergens. The amount of Ara h 1 and Ara h 2 in 3 varieties of peanut cultivars that are commonly processed in the industrialized countries was determined to be 12-16 and 6-9%, respectively. Current commercial peanut test kits use polyclonal peanut-specific antibodies to detect soluble or buffer extractable peanut proteins. Because the 2 major peanut allergens Ara h 1 and Ara h 2 are isolated from soluble peanut proteins, it is generally assumed that these commercial kits can detect peanut allergens, although none of these kits claims to detect peanut allergen. This study showed for the first time that the peanut test kits could, in fact, detect major peanut allergens Ara h 1 and Ara h 2 in both native or heat-denatured structures; therefore, these kits qualified to be classified as peanut allergen enzyme-linked immunosorbent assays.


Assuntos
Alérgenos/análise , Arachis/efeitos adversos , Arachis/química , Albuminas 2S de Plantas , Antígenos de Plantas , Eletroforese em Gel de Poliacrilamida , Ensaio de Imunoadsorção Enzimática , Manipulação de Alimentos , Glicoproteínas/análise , Temperatura Alta , Indicadores e Reagentes , Proteínas de Membrana , Proteínas de Plantas , Kit de Reagentes para Diagnóstico
11.
Microb Drug Resist ; 17(1): 7-16, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20795871

RESUMO

The aim of this study was to investigate the presence and prevalence of bla(TEM), bla(SHV), and bla(CTX-M) and bla(GES)-like genes, responsible for extended spectrum beta-lactamases (ESBLs) production in clinical isolates of Klebsiella pneumoniae collected from a Brazilian tertiary care hospital. Sixty-five ESBL producing K. pneumoniae isolates, collected between 2005 and 2007, were screened by polymerase chain reaction (PCR). Identification of bla genes was achieved by sequencing. Genotyping of ESBL producing K. pneumoniae was performed by the enterobacterial repetitive intergenic consensus-PCR with cluster analysis by the Dice coefficient. The presence of genes encoding ESBLs was confirmed in 59/65 (90.8%) isolates, comprising 20 bla(CTX-M-2), 14 bla(CTX-M-59), 12 bla(CTX-M-15), 9 bla(SHV-12), 1 bla(SHV-2), 1 bla(SHV-2a), 1 bla(SHV-5), and 1 bla(SHV-31) genes. The ESBL genes bla(SHV-12), bla(SHV-31), and bla(CTX-M-15), and the chromosome-encoded SHV-type beta-lactamase capable of hydrolyzing imipenem were detected in Brazil for the first time. The analysis of the enterobacterial repetitive intergenic consensus-PCR band patterns revealed a high rate of multiclonal bla(CTX-M) carrying K. pneumoniae isolates (70.8%), suggesting that dissemination of encoding plasmids is likely to be the major cause of the high prevalence of these genes among the K. pneumoniae isolates considered in this study.


Assuntos
Infecções por Klebsiella/microbiologia , Klebsiella pneumoniae/genética , beta-Lactamases/genética , Antibacterianos/farmacologia , Brasil , Farmacorresistência Bacteriana , Genótipo , Humanos , Infecções por Klebsiella/tratamento farmacológico , Klebsiella pneumoniae/efeitos dos fármacos , Klebsiella pneumoniae/isolamento & purificação , Testes de Sensibilidade Microbiana , Reação em Cadeia da Polimerase , Prevalência
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA