Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Semin Cancer Biol ; 47: 154-167, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28627410

RESUMO

Mitochondria are essential intracellular organelles that regulate energy metabolism, cell death, and signaling pathways that are important for cell proliferation and differentiation. Therefore, mitochondria are fundamentally implicated in cancer biology, including initiation, growth, metastasis, relapse, and acquired drug resistance. Based on these implications, mitochondria have been proposed as a major therapeutic target for cancer treatment. In addition to classical view of mitochondria in cancer biology, recent studies found novel pathophysiological roles of mitochondria in cancer. In this review, we introduce recent concepts of mitochondrial roles in cancer biology including mitochondrial DNA mutation and epigenetic modulation, energy metabolism reprogramming, mitochondrial channels, involvement in metastasis and drug resistance, and cancer stem cells. We also discuss the role of mitochondria in emerging cancer therapeutic strategies, especially cancer immunotherapy and CRISPR-Cas9 system gene therapy.


Assuntos
Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Terapia de Alvo Molecular , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Animais , Sistemas CRISPR-Cas , DNA Mitocondrial , Resistencia a Medicamentos Antineoplásicos/genética , Metabolismo Energético/efeitos dos fármacos , Humanos , Imunoterapia , Mitocôndrias/genética , Mutação , Metástase Neoplásica , Neoplasias/etiologia , Neoplasias/patologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/metabolismo
2.
JACC Basic Transl Sci ; 7(11): 1102-1116, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36687267

RESUMO

Recent trends suggest novel natural compounds as promising treatments for cardiovascular disease. The authors examined how neopetroside A, a natural pyridine nucleoside containing an α-glycoside bond, regulates mitochondrial metabolism and heart function and investigated its cardioprotective role against ischemia/reperfusion injury. Neopetroside A treatment maintained cardiac hemodynamic status and mitochondrial respiration capacity and significantly prevented cardiac fibrosis in murine models. These effects can be attributed to preserved cellular and mitochondrial function caused by the inhibition of glycogen synthase kinase-3 beta, which regulates the ratio of nicotinamide adenine dinucleotide to nicotinamide adenine dinucleotide, reduced, through activation of the nuclear factor erythroid 2-related factor 2/NAD(P)H quinone oxidoreductase 1 axis in a phosphorylation-independent manner.

3.
Exp Gerontol ; 108: 131-138, 2018 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-29627420

RESUMO

PURPOSE: Aging changes the balance of sex hormones and causes endothelial dysfunction in the penis, both of which are important determinants of erectile dysfunction (ED). The purpose of this study was to evaluate whether exercise training could protect against erectile dysfunction by increasing serum testosterone and penile eNOS levels in aging rats. METHODS: A total of 14 young (2-month-old) and 14 middle-aged (18-month-old) Sprague Dawley rats were randomly assigned to either untrained control (young control, [YC], middle-aged control, [MC]) or endurance exercise-trained (young exercise, [YE], middle-aged exercise, [ME]) groups with seven rats per group. The exercise groups trained with treadmill running for 6 weeks. Body composition parameters (body weight, heart mass, liver mass, and testicular mass), serum sex hormone levels (testosterone, luteinizing hormone, follicle-stimulating hormone, and prolactin), endothelial function-related parameters in the penis (endothelial nitric oxide synthase [eNOS], CD31, alpha smooth muscle actin [α-SMA]), and maximal intracavernous pressure measure (ICP) and total ICP were analyzed in middle-aged rats. RESULTS: The middle-aged groups showed increased body weight, as compared with the young groups, but exercise training attenuated the aging-induced increase in body weight. The middle-aged groups had lower testicular mass compared with the young groups, but exercise training attenuated aging-induced decreases in testicular mass. Exercise training increased serum testosterone levels in both the young and middle-aged groups. However, there were no changes in the levels of luteinizing hormone, follicle-stimulating hormone, and prolactin among the groups. MC group showed decreased protein levels of p-eNOS, as compared with the YC group. However, exercise training protected against aging-induced decrease in eNOS and p-eNOS protein levels in the penis. Interestingly, exercise training also increased protein levels of α-SMA and maximal ICP in the middle-aged group. CONCLUSIONS: Exercise training has beneficial effects on erectile function in aged rats through increased testosterone production from the testis and strengthening of the cavernous endothelium with activation of eNOS. Therefore, exercise training may be a therapeutic modality for improving erectile dysfunction associated with aging.


Assuntos
Disfunção Erétil/prevenção & controle , Óxido Nítrico Sintase Tipo III/metabolismo , Ereção Peniana/fisiologia , Condicionamento Físico Animal , Testosterona/sangue , Actinas/sangue , Envelhecimento/fisiologia , Animais , Masculino , Pênis/inervação , Pênis/fisiologia , Estimulação Física , Pressão , Distribuição Aleatória , Ratos , Ratos Sprague-Dawley
4.
Sci Rep ; 7: 43296, 2017 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-28240298

RESUMO

Irisin is secreted by skeletal muscle during exercise and influences energy and metabolic homeostasis. This hormone is a cleaved and secreted fragment of fibronectin type III domain-containing 5 (FNDC5). Elucidation of the FNDC5 gene regulation mechanism is necessary to clarify the function of irisin as a potential therapeutic target in human metabolic diseases. Thus, we investigated the genetic and epigenetic mechanisms that regulate expression of the FNDC5 gene. FNDC5 mRNA was strong expressed in major energy-dependent human tissues, including heart, brain, liver, and skeletal muscle. Promoter analysis of the FNDC5 gene revealed that the core promoter region of the FNDC5 gene contained one CpG island that was located just upstream of the transcriptional start site for variants 2 and 3. Treatment with the histone deacetylase inhibitor sodium butyrate and the demethylating agent 5-azacytidine increased mRNA expression of FNDC5 in Huh7 cells. Prediction of transcription factor binding sites suggested that the glucocorticoid receptor was involved in the regulation of FNDC5 expression, and indeed, cortisol treatment increased mRNA expression of FNDC5 in Huh7 cells. Collectively, these findings offer insight into the genetic and epigenetic regulation of FNDC5, providing the initial steps required for understanding the role of irisin in the metabolic homeostasis.


Assuntos
Epigênese Genética , Fibronectinas/genética , Fígado/metabolismo , Receptores de Glucocorticoides/genética , Transcrição Gênica , Células A549 , Animais , Azacitidina/farmacologia , Encéfalo/citologia , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Ácido Butírico/farmacologia , Linhagem Celular , Ilhas de CpG , Células Endoteliais/citologia , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/metabolismo , Fibronectinas/agonistas , Fibronectinas/metabolismo , Células HeLa , Células Hep G2 , Inibidores de Histona Desacetilases/farmacologia , Histona Desacetilases/genética , Histona Desacetilases/metabolismo , Humanos , Hidrocortisona/farmacologia , Fígado/citologia , Fígado/efeitos dos fármacos , Camundongos , Músculo Esquelético/citologia , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/metabolismo , Miocárdio/citologia , Miocárdio/metabolismo , Miócitos Cardíacos/citologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Regiões Promotoras Genéticas , Receptores de Glucocorticoides/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA