Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Assunto principal
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Plant Cell Rep ; 38(11): 1383-1392, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31342081

RESUMO

KEY MESSAGE: We apply the GWAS to sweet potato genome, and identified the SNPs associated with yield and weevil resistance. The sweet potato (Ipomoea batatas (L.) Lam) is a highly heterozygous, outcrossing, polyploid species, which presents challenges for genetic analysis. Therefore, we considered that genome-wide association studies (GWAS) may be applied to the study of the sweet potato genome. The yield of two sweet potato varieties [Purple Sweet Lord (PSL) and 90IDN-47] was assessed at two locations (Kumamoto and Okinawa prefectures) in Japan in 2013 and the yield scores were used for GWAS. The results showed that there were several single nucleotide polymorphisms (SNP) above the significance thresholds in PSL; two peaks were detected in Kumamoto and Okinawa on the Ib03-3 and Ib01-4 linkage groups of PSL, respectively. As for 90IDN-47, one relatively high peak was detected in Kumamoto on the Ib13-8 linkage group. Interestingly, although high peaks above significance thresholds were detected in Kumamoto and Okinawa in PSL, the peaks were located in different linkage groups. This result suggests that the genetic regions controlling yield may change in response to environmental conditions. Additionally, we investigated the degree of weevil damage to the plants, which is the greatest problem in sweet potato cultivation in Okinawa. In this experiment, no SNPs were identified above the significance thresholds. However, one relatively high peak was found in the 90IDN-47 genotype, which showed resistance to weevils. On the other hand, one relatively high peak was also detected in the PSL genotype, which showed susceptibility to weevils. These results suggest that two regions could affect weevil resistance and may contain the gene(s) controlling weevil resistance.


Assuntos
Ipomoea batatas/genética , Animais , Produção Agrícola , Proteção de Cultivos , Estudos de Associação Genética , Estudo de Associação Genômica Ampla , Ipomoea batatas/crescimento & desenvolvimento , Japão , Polimorfismo de Nucleotídeo Único , Poliploidia , Gorgulhos/crescimento & desenvolvimento
2.
Plants (Basel) ; 10(8)2021 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-34451581

RESUMO

Because weevils are the most damaging pests of sweetpotato, the development of cultivars resistant to weevil species is considered the most important aspect in sweetpotato breeding. However, the genes and the underlying molecular mechanisms related to weevil resistance are yet to be elucidated. In this study, we performed an RNA sequencing-based transcriptome analysis using the resistant Kyushu No. 166 (K166) and susceptible Tamayutaka cultivars. The weevil resistance test showed a significant difference between the two cultivars at 30 days after the inoculation, specifically in the weevil growth stage and the suppressed weevil pupation that was only observed in K166. Differential expression and gene ontology analyses revealed that the genes upregulated after inoculation in K166 were related to phosphorylation, metabolic, and cellular processes. Because the weevil resistance was considered to be related to the suppression of larval pupation, we investigated the juvenile hormone (JH)-related genes involved in the inhibition of insect metamorphosis. We found that the expression of some terpenoid-related genes, which are classified as plant-derived JHs, was significantly increased in K166. This is the first study involving a comprehensive gene expression analysis that provides new insights about the genes and mechanisms associated with weevil resistance in sweetpotato.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA