Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 20(11): 7860-7867, 2020 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-32986438

RESUMO

Time-reversal-symmetry-breaking Weyl semimetals (WSMs) have attracted great attention recently because of the interplay between intrinsic magnetism and topologically nontrivial electrons. Here, we present anomalous Hall and planar Hall effect studies on Co3Sn2S2 nanoflakes, a magnetic WSM hosting stacked Kagome lattice. The reduced thickness modifies the magnetic properties of the nanoflake, resulting in a 15-time larger coercive field compared with the bulk, and correspondingly modifies the transport properties. A 22% enhancement of the intrinsic anomalous Hall conductivity (AHC), as compared to bulk material, was observed. A magnetic field-modulated AHC, which may be related to the changing Weyl point separation with magnetic field, was also found. Furthermore, we showed that the PHE in a hard magnetic WSM is a complex interplay between ferromagnetism, orbital magnetoresistance, and chiral anomaly. Our findings pave the way for a further understanding of exotic transport features in the burgeoning field of magnetic topological phases.

2.
Nano Lett ; 17(5): 3202-3207, 2017 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-28414459

RESUMO

Atomically thin materials such as graphene or MoS2 are of high in-plane symmetry. Crystals with reduced symmetry hold the promise for novel optoelectronic devices based on their anisotropy in current flow or light polarization. Here, we present polarization-resolved optical transmission and photoluminescence spectroscopy of excitons in 1T'-ReSe2. On reducing the crystal thickness from bulk to a monolayer, we observe a strong blue shift of the optical band gap from 1.37 to 1.50 eV. The excitons are strongly polarized with dipole vectors along different crystal directions, which persist from bulk down to monolayer thickness. The experimental results are well reproduced by ab initio calculations based on the GW-BSE approach within LDA+GdW approximation. The excitons have high binding energies of 860 meV for the monolayer and 120 meV for bulk. They are strongly confined within a single layer even for the bulk crystal. In addition, we find in our calculations a direct band gap in 1T'-ReSe2 regardless of crystal thickness, indicating weak interlayer coupling effects on the band gap characteristics. Our results pave the way for polarization-sensitive applications, such as optical logic circuits operating in the infrared spectral region.

3.
Adv Sci (Weinh) ; : e2404495, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38889302

RESUMO

Heusler compounds belong to a large family of materials and exhibit numerous physical phenomena with promising applications, particularly ferromagnetic Weyl semimetals for their use in spintronics and memory devices. Here, anomalous Hall transport is reported in the room-temperature ferromagnets NiMnSb (half-metal with a Curie temperature (TC) of 660 K) and PtMnSb (pseudo half-metal with a TC of 560 K). They exhibit 4 µB/f.u. magnetic moments and non-trivial topological states. Moreover, NiMnSb and PtMnSb are the first half-Heusler ferromagnets to be reported as Weyl semimetals, and they exhibit anomalous Hall conductivity (AHC) due to the extended tail of the Berry curvature in these systems. The experimentally measured AHC values at 2 K are 1.8 × 102 Ω-1 cm-1 for NiMnSb and 2.2 × 103 Ω-1 cm-1 for PtMnSb. The comparatively large value between them can be explained in terms of the spin-orbit coupling strength. The combined approach of using ab initio calculations and a simple model shows that the Weyl nodes located far from the Fermi energy act as the driving mechanism for the intrinsic AHC. This contribution of topological features at higher energies can be generalized.

5.
Adv Mater ; 34(40): e2201350, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35980946

RESUMO

Kagome magnets possess several novel nontrivial topological features owing to the strong correlation between topology and magnetism that extends to their applications in the field of thermoelectricity. Conventional thermoelectric (TE) devices use the Seebeck effect to convert heat into electrical energy. In contrast, transverse thermoelectric devices based on the Nernst effect are attracting recent attention due to their unique transverse geometry, which uses a single material to eliminate the need for a multitude of electrical connections compared to conventional TE devices. Here, a large anomalous transverse thermoelectric effect of ≈2 µV K-1 at room temperature in a kagome antiferromagnet YMn6 Sn6 single crystal is obtained. The obtained value is larger than that of state-of-the-art canted antiferromagnetic (AFM) materials and comparable with ferromagnetic systems. The large anomalous Nernst effect (ANE) can be attributed to the net Berry curvature near the Fermi level. Furthermore, the ANE of the AFM YMn6 Sn6 exceeds the magnetization scaling relationship of conventional ferromagnets. The results clearly illustrate that AFM material YMn6 Sn6 is an ideal topological material for room-temperature transverse thermoelectric applications.

6.
Adv Sci (Weinh) ; 8(17): e2100782, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34240573

RESUMO

The interplay between topology and magnetism has recently sparked the frontier studies of magnetic topological materials that exhibit intriguing anomalous Hall and Nernst effects owning to the large intrinsic Berry curvature (BC). To better understand the anomalous quantum transport properties of these materials and their implications for future applications such as electronic and thermoelectric devices, it is crucial to discover more novel material platforms for performing anomalous transverse transport studies. Here, it is experimentally demonstrated that low-cost Fe-based Heusler compounds exhibit large anomalous Hall and Nernst effects. An anomalous Hall conductivity of 250-750 S cm-1 and Nernst thermopower of above 2 µV K-1 are observed near room temperature. The positive effect of anti-site disorder on the anomalous Hall transport is revealed. Considering the very high Curie temperature (nearly 1000 K), larger Nernst thermopowers at high temperatures are expected owing to the existing magnetic order and the intrinsic BC. This work provides a background for developing low-cost Fe-based Heusler compounds as a new material platform for anomalous transport studies and applications, in particular, near and above room temperature.

7.
Adv Mater ; 33(48): e2104126, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34510589

RESUMO

The nontrivial band structure of semimetals has attracted substantial research attention in condensed matter physics and materials science in recent years owing to its intriguing physical properties. Within this class, a group of nontrivial materials known as nodal-line semimetals is particularly important. Nodal-line semimetals exhibit the potential effects of electronic correlation in nonmagnetic materials, whereas they enhance the contribution of the Berry curvature in magnetic materials, resulting in high anomalous Hall conductivity (AHC). In this study, two ferromagnetic compounds, namely ZrMnP and HfMnP, are selected, wherein the abundance of mirror planes in the crystal structure ensures gapped nodal lines at the Fermi energy. These nodal lines result in one of the largest AHC values of 2840 Ω-1 cm-1 , with a high anomalous Hall angle of 13.6% in these compounds. First-principles calculations provide a clear and detailed understanding of nodal line-enhanced AHC. The finding suggests a guideline for searching large AHC compounds.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA