Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 71
Filtrar
1.
Cell ; 149(6): 1298-313, 2012 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-22682250

RESUMO

Wnt signaling plays critical roles in development of various organs and pathogenesis of many diseases, and augmented Wnt signaling has recently been implicated in mammalian aging and aging-related phenotypes. We here report that complement C1q activates canonical Wnt signaling and promotes aging-associated decline in tissue regeneration. Serum C1q concentration is increased with aging, and Wnt signaling activity is augmented during aging in the serum and in multiple tissues of wild-type mice, but not in those of C1qa-deficient mice. C1q activates canonical Wnt signaling by binding to Frizzled receptors and subsequently inducing C1s-dependent cleavage of the ectodomain of Wnt coreceptor low-density lipoprotein receptor-related protein 6. Skeletal muscle regeneration in young mice is inhibited by exogenous C1q treatment, whereas aging-associated impairment of muscle regeneration is restored by C1s inhibition or C1qa gene disruption. Our findings therefore suggest the unexpected role of complement C1q in Wnt signal transduction and modulation of mammalian aging.


Assuntos
Envelhecimento/metabolismo , Complemento C1q/metabolismo , Via de Sinalização Wnt , Animais , Complemento C1s/metabolismo , Humanos , Proteína-6 Relacionada a Receptor de Lipoproteína de Baixa Densidade/metabolismo , Camundongos , Soro/metabolismo
2.
Biochem Biophys Res Commun ; 637: 247-253, 2022 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-36410273

RESUMO

Dopamine D1 receptor (D1R), coded by the Drd1 gene, is induced in cardiomyocytes of failing hearts, triggering heart failure-associated ventricular arrhythmia, and therefore could be a potential therapeutic target for chronic heart failure. The regulation of D1R expression, however, is not fully understood. Here, we explored the molecular mechanism by which cardiomyocyte D1R is induced in failing hearts. We performed motif analysis for the promoter region of the Drd1 gene using the transcription factor affinity prediction (TRAP) method and identified nuclear factor-kappa B (NF-κB) as a candidate transcriptional factor regulating the expression of the Drd1 gene. We next employed murine models of heart failure from chronic pressure overload by transverse aortic constriction (TAC), and assessed myocardial Drd1 expression levels and NF-κB activity, as well as endoplasmic reticulum (ER) stress, which has been implicated in the pathogenesis of heart failure. Drd1 induction in TAC hearts was dependent on the severity of heart failure, and was associated with NF-κB activation and ER stress, as assessed by p65 phosphorylation and the expression of ER stress-related genes, respectively. We further tested if Drd1 was induced by ER stress via NF-κB activation in cultured neonatal rat ventricular myocytes. Tunicamycin activated NF-κB pathway in an ER stress-dependent manner and increased Drd1 expression. Importantly, inhibition of NF-κB pathway by pretreatment with Bay11-7082 completely suppressed the tunicamycin-induced upregulation of Drd1, suggesting that NF-κB activation is essential to this regulation. Our study demonstrates the pivotal role for the ER stress-induced NF-κB activation in the induction of D1R in cardiomyocytes. Intervention of this pathway might be a potential new therapeutic strategy for heart failure-associated ventricular arrhythmia.


Assuntos
Estenose da Valva Aórtica , Insuficiência Cardíaca , Ratos , Animais , Camundongos , Miócitos Cardíacos , Regulação para Cima , NF-kappa B , Fator B do Complemento , Estresse do Retículo Endoplasmático , Tunicamicina , Receptores de Dopamina D1/genética , Insuficiência Cardíaca/genética , Fatores de Transcrição , Transdução de Sinais
3.
J Am Soc Nephrol ; 32(7): 1599-1615, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33875568

RESUMO

BACKGROUND: The sympathetic nervous system regulates immune cell dynamics. However, the detailed role of sympathetic signaling in inflammatory diseases is still unclear because it varies according to the disease situation and responsible cell types. This study focused on identifying the functions of sympathetic signaling in macrophages in LPS-induced sepsis and renal ischemia-reperfusion injury (IRI). METHODS: We performed RNA sequencing of mouse macrophage cell lines to identify the critical gene that mediates the anti-inflammatory effect of ß2-adrenergic receptor (Adrb2) signaling. We also examined the effects of salbutamol (a selective Adrb2 agonist) in LPS-induced systemic inflammation and renal IRI. Macrophage-specific Adrb2 conditional knockout (cKO) mice and the adoptive transfer of salbutamol-treated macrophages were used to assess the involvement of macrophage Adrb2 signaling. RESULTS: In vitro, activation of Adrb2 signaling in macrophages induced the expression of T cell Ig and mucin domain 3 (Tim3), which contributes to anti-inflammatory phenotypic alterations. In vivo, salbutamol administration blocked LPS-induced systemic inflammation and protected against renal IRI; this protection was mitigated in macrophage-specific Adrb2 cKO mice. The adoptive transfer of salbutamol-treated macrophages also protected against renal IRI. Single-cell RNA sequencing revealed that this protection was associated with the accumulation of Tim3-expressing macrophages in the renal tissue. CONCLUSIONS: The activation of Adrb2 signaling in macrophages induces anti-inflammatory phenotypic alterations partially via the induction of Tim3 expression, which blocks LPS-induced systemic inflammation and protects against renal IRI.

4.
Int Heart J ; 63(2): 338-346, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35354754

RESUMO

Dilated cardiomyopathy (DCM) is caused by various gene variants and characterized by systolic dysfunction. Lamin variants have been reported to have a poor prognosis. Medical and device therapies are not sufficient to improve the prognosis of DCM with the lamin variants. Recently, induced pluripotent stem (iPS) cells have been used for research on genetic disorders. However, few studies have evaluated the contractile function of cardiac tissue with lamin variants. The aim of this study was to elucidate the function of cardiac cell sheet tissue derived from patients with lamin variant DCM. iPS cells were generated from a patient with lamin A/C (LMNA) -mutant DCM (LMNA p.R225X mutation). After cardiac differentiation and purification, cardiac cell sheets that were fabricated through cultivation on a temperature-responsive culture dish were transferred to the surface of the fibrin gel, and the contractile force was measured. The contractile force and maximum contraction velocity, but not the maximum relaxation velocity, were significantly decreased in cardiac cell sheet tissue with the lamin variant. A qRT-PCR analysis revealed that mRNA expression of some contractile proteins, cardiac transcription factors, Ca2+-handling genes, and ion channels were downregulated in cardiac tissue with the lamin variant.Human iPS-derived bioengineered cardiac tissue with the LMNA p.R225X mutation has the functional properties of systolic dysfunction and may be a promising tissue model for understanding the underlying mechanisms of DCM.


Assuntos
Cardiomiopatias , Cardiomiopatia Dilatada , Células-Tronco Pluripotentes Induzidas , Cardiomiopatias/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/metabolismo , Mutação , Miócitos Cardíacos/metabolismo
5.
J Mol Cell Cardiol ; 152: 29-39, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33275937

RESUMO

Heart failure is a leading cause of death, and the number of patients with heart failure continues to increase worldwide. To realize precision medicine for heart failure, its underlying molecular mechanisms must be elucidated. In this review summarizing the "The Research Achievement Award Lecture" of the 2019 XXIII ISHR World Congress held in Beijing, China, we would like to introduce our approaches for investigating the molecular mechanisms of cardiac hypertrophy, development, and failure, as well as discuss future perspectives.


Assuntos
Distinções e Prêmios , Insuficiência Cardíaca/terapia , Medicina de Precisão , Animais , Humanos
6.
J Hum Genet ; 66(1): 75-84, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32951011

RESUMO

Cells are minimal functional units in biological phenomena, and therefore single-cell analysis is needed to understand the molecular behavior leading to cellular function in organisms. In addition, omics analysis technology can be used to identify essential molecular mechanisms in an unbiased manner. Recently, single-cell genomics has unveiled hidden molecular systems leading to disease pathogenesis in patients. In this review, I summarize the recent advances in single-cell genomics for the understanding of disease pathogenesis and discuss future perspectives.


Assuntos
Perfilação da Expressão Gênica/métodos , Genoma Humano/genética , Genômica/métodos , Insuficiência Cardíaca/genética , Miócitos Cardíacos/metabolismo , Análise de Célula Única/métodos , Epigenômica/métodos , Técnicas de Genotipagem/métodos , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/terapia , Humanos , Miócitos Cardíacos/citologia , RNA-Seq/métodos
7.
Int J Mol Sci ; 22(22)2021 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-34830403

RESUMO

With the development and advancement of next-generation sequencing (NGS), genetic analysis is becoming more accessible. High-throughput genetic studies using NGS have contributed to unraveling the association between cardiomyopathy and genetic background, as is the case with many other diseases. Rare variants have been shown to play major roles in the pathogenesis of cardiomyopathy, which was empirically recognized as a monogenic disease, and it has been elucidated that the clinical course of cardiomyopathy varies depending on the causative genes. These findings were not limited to dilated and hypertrophic cardiomyopathy; similar trends were reported one after another for peripartum cardiomyopathy (PPCM), cancer therapy-related cardiac dysfunction (CTRCD), and alcoholic cardiomyopathy (ACM). In addition, as the association between clinical phenotypes and the causative genes becomes clearer, progress is being made in elucidating the mechanisms and developing novel therapeutic agents. Recently, it has been suggested that not only rare variants but also common variants contribute to the development of cardiomyopathy. Cardiomyopathy and genetics are approaching a new era, which is summarized here in this overview.


Assuntos
Cardiomiopatias/genética , Cardiomiopatia Alcoólica/genética , Cardiomiopatia Dilatada/genética , Cardiomiopatia Hipertrófica/genética , Cardiomiopatias/patologia , Cardiomiopatia Alcoólica/patologia , Cardiomiopatia Dilatada/patologia , Cardiomiopatia Hipertrófica/patologia , Testes Genéticos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Mutação , Fenótipo
8.
Int J Mol Sci ; 21(21)2020 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-33172208

RESUMO

Single-cell RNA sequencing (scRNA-seq) technology is a powerful, rapidly developing tool for characterizing individual cells and elucidating biological mechanisms at the cellular level. Cardiovascular disease is one of the major causes of death worldwide and its precise pathology remains unclear. scRNA-seq has provided many novel insights into both healthy and pathological hearts. In this review, we summarize the various scRNA-seq platforms and describe the molecular mechanisms of cardiovascular development and disease revealed by scRNA-seq analysis. We then describe the latest technological advances in scRNA-seq. Finally, we discuss how to translate basic research into clinical medicine using scRNA-seq technology.


Assuntos
Coração/fisiologia , Miocárdio/metabolismo , Análise de Sequência de RNA/tendências , Sequência de Bases/genética , Análise por Conglomerados , Perfilação da Expressão Gênica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Humanos , Análise de Sequência de RNA/métodos , Análise de Célula Única/métodos , Análise de Célula Única/tendências , Software , Sequenciamento do Exoma/métodos
9.
J Mol Cell Cardiol ; 128: 90-95, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30684499

RESUMO

BACKGROUND: Since regenerative capacity of adult mammalian myocardium is limited, activation of the endogenous proliferative capacity of existing cardiomyocytes is a potential therapeutic strategy for treating heart diseases accompanied by cardiomyocyte loss. Recently, we performed a compound screening and developed a new drug named TT-10 (C11H10FN3OS2) which promotes the proliferation of murine cardiomyocytes via enhancement of YES-associated protein (YAP)-transcriptional enhancer factor domain (TEAD) activity and improves cardiac function after myocardial infarction in adult mice. METHODS AND RESULTS: To test whether TT-10 can also promote the proliferative capacity of human cardiomyocytes, we investigated the efficacy of TT-10 on human induced pluripotent stem cell (hiPSC)-derived cardiomyocytes (hiPSCMs). The hiPSCs were established from monocytes obtained from healthy donors and cardiac differentiation was performed using a chemically defined protocol. As was observed in murine cardiomyocytes, TT-10 markedly promoted cell cycle activation and increased cell division of hiPSCMs. We then evaluated other effects of TT-10 on the functional properties of hiPSCMs by gene expression and cell motion analyses. We observed that TT-10 had no unfavorable effects on the expression of functional and structural genes or the contractile properties of hiPSCMs. CONCLUSIONS: Our results suggest that the novel drug TT-10 effectively activated the cell cycle of hiPSCMs without apparent functional impairment of myocardium, suggesting the potential of clinical usefulness of this drug.


Assuntos
Ciclo Celular/efeitos dos fármacos , Células-Tronco Pluripotentes Induzidas/efeitos dos fármacos , Miócitos Cardíacos/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Diferenciação Celular/efeitos dos fármacos , Divisão Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Regulação da Expressão Gênica no Desenvolvimento/efeitos dos fármacos , Humanos , Camundongos , Miocárdio/metabolismo , Miocárdio/patologia , Regeneração/efeitos dos fármacos , Regeneração/genética
10.
J Mol Cell Cardiol ; 128: 77-89, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30611794

RESUMO

BACKGROUND: The heart responds to hemodynamic overload through cardiac hypertrophy and activation of the fetal gene program. However, these changes have not been thoroughly examined in individual cardiomyocytes, and the relation between cardiomyocyte size and fetal gene expression remains elusive. We established a method of high-throughput single-molecule RNA imaging analysis of in vivo cardiomyocytes and determined spatial and temporal changes during the development of heart failure. METHODS AND RESULTS: We applied three novel single-cell analysis methods, namely, single-cell quantitative PCR (sc-qPCR), single-cell RNA sequencing (scRNA-seq), and single-molecule fluorescence in situ hybridization (smFISH). Isolated cardiomyocytes and cross sections from pressure overloaded murine hearts after transverse aortic constriction (TAC) were analyzed at an early hypertrophy stage (2 weeks, TAC2W) and at a late heart failure stage (8 weeks, TAC8W). Expression of myosin heavy chain ß (Myh7), a representative fetal gene, was induced in some cardiomyocytes in TAC2W hearts and in more cardiomyocytes in TAC8W hearts. Expression levels of Myh7 varied considerably among cardiomyocytes. Myh7-expressing cardiomyocytes were significantly more abundant in the middle layer, compared with the inner or outer layers of TAC2W hearts, while such spatial differences were not observed in TAC8W hearts. Expression levels of Myh7 were inversely correlated with cardiomyocyte size and expression levels of mitochondria-related genes. CONCLUSIONS: We developed a new image-analysis pipeline to allow automated and unbiased quantification of gene expression at the single-cell level and determined the spatial and temporal regulation of heterogenous Myh7 expression in cardiomyocytes after pressure overload.


Assuntos
Aorta/diagnóstico por imagem , Cardiomegalia/genética , Insuficiência Cardíaca/diagnóstico por imagem , Imagem Molecular/métodos , Cadeias Pesadas de Miosina/genética , Animais , Aorta/metabolismo , Aorta/patologia , Cardiomegalia/diagnóstico , Cardiomegalia/diagnóstico por imagem , Regulação da Expressão Gênica/genética , Coração/diagnóstico por imagem , Coração/fisiopatologia , Insuficiência Cardíaca/patologia , Hemodinâmica , Hibridização in Situ Fluorescente , Camundongos , Mitocôndrias/genética , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Cadeias Pesadas de Miosina/isolamento & purificação , RNA/genética , RNA/isolamento & purificação , Análise de Sequência de RNA , Imagem Individual de Molécula , Análise de Célula Única
13.
Int Heart J ; 59(5): 1096-1105, 2018 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-30101858

RESUMO

Hypertrophic cardiomyopathy (HCM) is a genetic disorder that is characterized by hypertrophy of the myocardium. Some of the patients are diagnosed for HCM during infancy, and the prognosis of infantile HCM is worse than general HCM. Nevertheless, pathophysiology of infantile HCM is less investigated and remains largely unknown. In the present study, we generated induced pluripotent stem cells (iPSCs) from two patients with infantile HCM: one with Noonan syndrome and the other with idiopathic HCM. We found that iPSC-derived cardiomyocytes (iPSC-CMs) from idiopathic HCM patient were significantly larger and showed higher diastolic intracellular calcium concentration compared with the iPSC-CMs from healthy subject. Unlike iPSC-CMs from the adult/adolescent HCM patient, arrhythmia was not observed as a disease-related phenotype in iPSC-CMs from idiopathic infantile HCM patient. Phenotypic screening revealed that Pyr3, a transient receptor potential channel 3 channel inhibitor, decreased both the cell size and diastolic intracellular calcium concentration in iPSC-CMs from both Noonan syndrome and idiopathic infantile HCM patients, suggesting that the target of Pyr3 may play a role in the pathogenesis of infantile HCM, regardless of the etiology. Further research may unveil the possibility of Pyr3 or its derivatives in the treatment of infantile HCM.


Assuntos
Cardiomiopatia Hipertrófica/metabolismo , Células-Tronco Pluripotentes Induzidas/metabolismo , Programas de Rastreamento/métodos , Síndrome de Noonan/metabolismo , Canais de Potencial de Receptor Transitório/antagonistas & inibidores , Adulto , Cálcio/metabolismo , Cardiomiopatia Hipertrófica/diagnóstico , Cardiomiopatia Hipertrófica/tratamento farmacológico , Cardiomiopatia Hipertrófica/patologia , Pré-Escolar , Humanos , Masculino , Mutação , Miocárdio/patologia , Miócitos Cardíacos/patologia , Síndrome de Noonan/diagnóstico , Síndrome de Noonan/tratamento farmacológico , Síndrome de Noonan/patologia , Fenótipo , Prevalência , Canais de Potencial de Receptor Transitório/uso terapêutico
16.
BMC Bioinformatics ; 17(1): 363, 2016 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-27620863

RESUMO

BACKGROUND: Single-cell RNA sequencing is fast becoming one the standard method for gene expression measurement, providing unique insights into cellular processes. A number of methods, based on general dimensionality reduction techniques, have been suggested to help infer and visualise the underlying structure of cell populations from single-cell expression levels, yet their models generally lack proper biological grounding and struggle at identifying complex differentiation paths. RESULTS: Here we introduce cellTree: an R/Bioconductor package that uses a novel statistical approach, based on document analysis techniques, to produce tree structures outlining the hierarchical relationship between single-cell samples, while identifying latent groups of genes that can provide biological insights. CONCLUSIONS: With cellTree, we provide experimentalists with an easy-to-use tool, based on statistically and biologically-sound algorithms, to efficiently explore and visualise single-cell RNA data. The cellTree package is publicly available in the online Bionconductor repository at: http://bioconductor.org/packages/cellTree/ .


Assuntos
RNA/genética , Análise de Sequência de RNA/métodos , Células-Tronco/imunologia , Diferenciação Celular , Humanos
17.
Am J Nephrol ; 44(4): 276-285, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27607351

RESUMO

BACKGROUND: Kidney injury, including chronic kidney disease and acute kidney injury, is a worldwide health problem. Hypoxia and transforming growth factor-ß (TGF-ß) are well-known factors that promote kidney injury. Hypoxia-inducible factor (HIF) and SMAD3 are their main downstream transcriptional factors. Hypoxia-HIF pathway and TGF-ß/SMAD3 pathway play a crucial role in the progression of kidney injury. However, reports on their interactions are limited, and the global transcriptional regulation under their control is almost unknown. METHODS: Kidney tubular epithelial cells were cultured and stimulated by hypoxia and TGF-ß. We detected global binding sites of HIF-1α and SMAD3 in cells using chromatin immunoprecipitation-sequencing (ChIP-Seq), and measured the gene expression using RNA-sequencing (RNA-Seq). ChIP-quantitative PCR (qPCR) was used to quantitatively evaluate bindings of SMAD3. RESULTS: ChIP-Seq revealed that 2,065 and 5,003 sites were bound by HIF-1α and SMAD3, respectively, with 614 sites co-occupied by both factors. RNA-Seq showed that hypoxia and TGF-ß stimulation causes synergistic upregulation of 249 genes, including collagen type I alpha 1 (COL1A1) and serpin peptidase inhibitor, clade E, member 1, which are well-known to be involved in fibrosis. Ontology of the 249 genes implied that the interaction of HIF-1α and SMAD3 is related to biological processes such as fibrosis. ChIP-qPCR of SMAD3 at HIF-1α binding sites near COL1A1 and SERPINE1 indicated that HIF-1α promotes the bindings of SMAD3, which is induced by TGF-ß. CONCLUSIONS: These findings suggest that HIF-1α induced by hypoxia activates the TGF-ß/SMAD3 pathway. This mechanism may promote kidney injury, especially by upregulating genes related to fibrosis.


Assuntos
Hipóxia Celular , Células Epiteliais/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Proteína Smad3/metabolismo , Fator de Crescimento Transformador beta/farmacologia , Linhagem Celular , Colágeno Tipo I/genética , Cadeia alfa 1 do Colágeno Tipo I , Expressão Gênica/efeitos dos fármacos , Humanos , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Túbulos Renais Proximais/citologia , Inibidor 1 de Ativador de Plasminogênio/genética , RNA Mensageiro/análise , Análise de Sequência de RNA , Transdução de Sinais/efeitos dos fármacos , Proteína Smad3/genética , Transcriptoma , Regulação para Cima/efeitos dos fármacos
19.
Circ Rep ; 6(5): 178-182, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38736847

RESUMO

Background: Genetic testing for cardiovascular diseases (CVD) is vital, but is underutilized in Japan due to limited insurance coverage, accessibility, and public disinterest. This study explores demographic factors influencing the decision to undergo CVD genetic testing. Methods and Results: We compared the CVD history and baseline demographics of Japanese adults who underwent genetic testing with those who did not, using an Internet survey. The regression model indicated that men, the young, married individuals, parents, and those with CVD, higher score for rationality, and lower quality of life were more inclined to undergo testing. Conclusions: Targeting strategies for CVD genetic testing could focus on these demographics.

20.
Biosystems ; 236: 105122, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38199520

RESUMO

The integration of multiple omics data promises to reveal new insights into the pathogenic mechanisms of complex human diseases, with the potential to identify avenues for the development of targeted therapies for disease subtypes. However, the extraction of diagnostic/disease-specific biomarkers from multiple omics data with biological pathway knowledge is a challenging issue in precision medicine. In this paper, we present a novel computational method to identify diagnosis-specific trans-omic biomarkers from multiple omics data. In the algorithm, we integrated multi-class sparse canonical correlation analysis (MSCCA) and molecular pathway analysis in order to derive discriminative molecular features that are correlated across different omics layers. We applied our proposed method to analyzing proteome and metabolome data of heart failure (HF), and extracted trans-omic biomarkers for HF subtypes; specifically, ischemic cardiomyopathy (ICM) and dilated cardiomyopathy (DCM). We were able to detect not only individual proteins that were previously reported from single-omics studies but also correlated protein-metabolite pairs characteristic of HF disease subtypes. For example, we identified hexokinase1(HK1)-d-fructose-6-phosphate as a paired trans-omic biomarker for DCM, which could significantly perturb amino-sugar metabolism. Our proposed method is expected to be useful for various applications in precision medicine.


Assuntos
Algoritmos , Medicina de Precisão , Humanos , Biomarcadores/análise , Proteoma , Metaboloma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA