Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
BMC Cancer ; 24(1): 104, 2024 Jan 18.
Artigo em Inglês | MEDLINE | ID: mdl-38238650

RESUMO

BACKGROUND: Colibactin, a genotoxin produced by polyketide synthase harboring (pks+) bacteria, induces double-strand breaks and chromosome aberrations. Consequently, enrichment of pks+Escherichia coli in colorectal cancer and polyposis suggests a possible carcinogenic effect in the large intestine. Additionally, specific colibactin-associated mutational signatures; SBS88 and ID18 in the Catalogue of Somatic Mutations in Cancer database, are detected in colorectal carcinomas. Previous research showed that a recurrent APC splice variant perfectly fits SBS88. METHODS: In this study, we explore the presence of colibactin-associated signatures and fecal pks in an unexplained polyposis cohort. Somatic targeted Next-Generation Sequencing (NGS) was performed for 379 patients. Additionally, for a subset of 29 patients, metagenomics was performed on feces and mutational signature analyses using Whole-Genome Sequencing (WGS) on Formalin-Fixed Paraffin Embedded (FFPE) colorectal tissue blocks. RESULTS: NGS showed somatic APC variants fitting SBS88 or ID18 in at least one colorectal adenoma or carcinoma in 29% of patients. Fecal metagenomic analyses revealed enriched presence of pks genes in patients with somatic variants fitting colibactin-associated signatures compared to patients without variants fitting colibactin-associated signatures. Also, mutational signature analyses showed enrichment of SBS88 and ID18 in patients with variants fitting these signatures in NGS compared to patients without. CONCLUSIONS: These findings further support colibactins ability to mutagenize colorectal mucosa and contribute to the development of colorectal adenomas and carcinomas explaining a relevant part of patients with unexplained polyposis.


Assuntos
Adenoma , Carcinoma , Neoplasias Colorretais , Policetídeos , Humanos , Mutação , Neoplasias Colorretais/genética , Neoplasias Colorretais/microbiologia , Peptídeos/genética , Escherichia coli/genética , Adenoma/genética
2.
Gastroenterology ; 161(4): 1218-1228.e5, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34126062

RESUMO

BACKGROUND & AIMS: Patients with multiple recurrent Clostridioides difficile infection (rCDI) have a disturbed gut microbiota that can be restored by fecal microbiota transplantation (FMT). Despite extensive screening, healthy feces donors may carry bacteria in their intestinal tract that could have long-term health effects, such as potentially procarcinogenic polyketide synthase-positive (pks+) Escherichia coli. Here, we aim to determine whether the pks abundance and persistence of pks+E coli is influenced by pks status of the donor feces. METHODS: In a cohort of 49 patients with rCDI treated with FMT and matching donor samples-the largest cohort of its kind, to our knowledge-we retrospectively screened fecal metagenomes for pks+E coli and compared the presence of pks in patients before and after treatment and to their respective donors. RESULTS: The pks island was more prevalent (P = .026) and abundant (P < .001) in patients with rCDI (pre-FMT, 27 of 49 [55%]; median, 0.46 reads per kilobase per million [RPKM] pks) than in healthy donors (3 of 8 donors [37.5%], 11 of 38 samples [29%]; median, 0.01 RPKM pks). The pks status of patients post-FMT depended on the pks status of the donor suspension with which the patient was treated (P = .046). Particularly, persistence (8 of 9 cases) or clearance (13 of 18) of pks+E coli in pks+ patients was correlated to pks in the donor (P = .004). CONCLUSIONS: We conclude that FMT contributes to pks+E coli persistence or eradication in patients with rCDI but that donor-to-patient transmission of pks+E coli is unlikely.


Assuntos
Clostridioides difficile/patogenicidade , Infecções por Clostridium/terapia , Escherichia coli/crescimento & desenvolvimento , Transplante de Microbiota Fecal , Microbioma Gastrointestinal , Adulto , Idoso , Idoso de 80 Anos ou mais , Infecções por Clostridium/diagnóstico , Infecções por Clostridium/microbiologia , Disbiose , Escherichia coli/enzimologia , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Transplante de Microbiota Fecal/efeitos adversos , Feminino , Humanos , Masculino , Metagenoma , Metagenômica , Pessoa de Meia-Idade , Policetídeo Sintases/genética , Policetídeo Sintases/metabolismo , Reinfecção , Estudos Retrospectivos , Fatores de Tempo , Resultado do Tratamento
3.
J Antimicrob Chemother ; 76(7): 1731-1740, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-33876817

RESUMO

BACKGROUND: Until recently, metronidazole was the first-line treatment for Clostridioides difficile infection and it is still commonly used. Though resistance has been reported due to the plasmid pCD-METRO, this does not explain all cases. OBJECTIVES: To identify factors that contribute to plasmid-independent metronidazole resistance of C. difficile. METHODS: Here, we investigate resistance to metronidazole in a collection of clinical isolates of C. difficile using a combination of antimicrobial susceptibility testing on different solid agar media and WGS of selected isolates. RESULTS: We find that nearly all isolates demonstrate a haem-dependent increase in the MIC of metronidazole, which in some cases leads to isolates qualifying as resistant (MIC >2 mg/L). Moreover, we find an SNP in the haem-responsive gene hsmA, which defines a metronidazole-resistant lineage of PCR ribotype 010/MLST ST15 isolates that also includes pCD-METRO-containing strains. CONCLUSIONS: Our data demonstrate that haem is crucial for medium-dependent metronidazole resistance in C. difficile.


Assuntos
Clostridioides difficile , Infecções por Clostridium , Antibacterianos/farmacologia , Antibacterianos/uso terapêutico , Clostridioides , Clostridioides difficile/genética , Infecções por Clostridium/tratamento farmacológico , Heme , Humanos , Metronidazol/farmacologia , Testes de Sensibilidade Microbiana , Tipagem de Sequências Multilocus , Ribotipagem
4.
Bioinformatics ; 35(5): 871-873, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30124794

RESUMO

SUMMARY: Genome Detective is an easy to use web-based software application that assembles the genomes of viruses quickly and accurately. The application uses a novel alignment method that constructs genomes by reference-based linking of de novo contigs by combining amino-acids and nucleotide scores. The software was optimized using synthetic datasets to represent the great diversity of virus genomes. The application was then validated with next generation sequencing data of hundreds of viruses. User time is minimal and it is limited to the time required to upload the data. AVAILABILITY AND IMPLEMENTATION: Available online: http://www.genomedetective.com/app/typingtool/virus/. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Sequenciamento de Nucleotídeos em Larga Escala , Sistemas de Liberação de Medicamentos , Genoma Viral , Análise de Sequência de DNA , Software , Vírus
5.
Gastroenterology ; 162(3): 994-995, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34863789
6.
Genome Med ; 16(1): 37, 2024 02 28.
Artigo em Inglês | MEDLINE | ID: mdl-38419010

RESUMO

BACKGROUND: Multidrug-resistant (MDR) bacteria are a growing global threat, especially in healthcare facilities. Faecal microbiota transplantation (FMT) is an effective prevention strategy for recurrences of Clostridioides difficile infections and can also be useful for other microbiota-related diseases. METHODS: We study the effect of FMT in patients with multiple recurrent C. difficile infections on colonisation with MDR bacteria and antibiotic resistance genes (ARG) on the short (3 weeks) and long term (1-3 years), combining culture methods and faecal metagenomics. RESULTS: Based on MDR culture (n = 87 patients), we notice a decrease of 11.5% in the colonisation rate of MDR bacteria after FMT (20/87 before FMT = 23%, 10/87 3 weeks after FMT). Metagenomic sequencing of patient stool samples (n = 63) shows a reduction in relative abundances of ARGs in faeces, while the number of different resistance genes in patients remained higher compared to stools of their corresponding healthy donors (n = 11). Furthermore, plasmid predictions in metagenomic data indicate that patients harboured increased levels of resistance plasmids, which appear unaffected by FMT. In the long term (n = 22 patients), the recipients' resistomes are still donor-like, suggesting the effect of FMT may last for years. CONCLUSIONS: Taken together, we hypothesise that FMT restores the gut microbiota to a composition that is closer to the composition of healthy donors, and potential pathogens are either lost or decreased to very low abundances. This process, however, does not end in the days following FMT. It may take months for the gut microbiome to re-establish a balanced state. Even though a reservoir of resistance genes remains, a notable part of which on plasmids, FMT decreases the total load of resistance genes.


Assuntos
Clostridioides difficile , Infecções por Clostridium , Microbiota , Humanos , Transplante de Microbiota Fecal/métodos , Clostridioides difficile/genética , Fezes/microbiologia , Infecções por Clostridium/terapia , Infecções por Clostridium/microbiologia , Resultado do Tratamento
7.
J Crohns Colitis ; 2024 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-38572716

RESUMO

BACKGROUND: Fecal microbiota transplantation (FMT) shows some efficacy in treating patients with ulcerative colitis (UC), although variability has been observed among donors and treatment regimens. We investigated the effect of FMT using rationally selected donors after pretreatment with budesonide or placebo in active UC. METHODS: Patients ≥ 18 years old with mild to moderate active UC were randomly assigned to three weeks budesonide (9 mg) or placebo followed by four weekly infusions of a donor feces suspension. Two donors were selected based on microbiota composition, Treg induction and SCFA production in mice. The primary endpoint was engraftment of donor microbiota after FMT. In addition, clinical efficacy was assessed. RESULTS: In total, 24 patients were enrolled. Pretreatment with budesonide did not increase donor microbiota engraftment (p=0.56) nor clinical response, and engraftment was not associated with clinical response. At week 14, 10/24 (42%) of patients achieved (partial) remission. Remarkably, patients treated with FMT suspensions from one donor were associated with clinical response (80% of responders, p<0.05) but had lower overall engraftment of donor microbiota. Furthermore, differences in the taxonomic composition of the donors and the engraftment of certain taxa were associated with clinical response. CONCLUSION: In this small study, pretreatment with budesonide did not significantly influence engraftment or clinical response after FMT. However, clinical response appeared donor-dependent. Response to FMT may be related to transfer of specific strains instead of overall engraftment, demonstrating the need to characterize mechanisms of actions of strains that maximize therapeutic benefit in ulcerative colitis.

8.
Lancet Microbe ; 3(6): e443-e451, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35659906

RESUMO

BACKGROUND: Gut colonisation by extended-spectrum ß-lactamase (ESBL)-producing Escherichia coli is a risk factor for developing overt infection. The gut microbiome can provide colonisation resistance against enteropathogens, but it remains unclear whether it confers resistance against ESBL-producing E coli. We aimed to identify a potential role of the microbiome in controlling colonisation by this antibiotic-resistant bacterium. METHODS: For this matched case-control study, we used faeces from 2751 individuals in a Dutch cross-sectional population study (PIENTER-3) to culture ESBL-producing bacteria. Of these, we selected 49 samples that were positive for an ESBL-producing E coli (ESBL-positive) and negative for several variables known to affect microbiome composition. These samples were matched 1:1 to ESBL-negative samples on the basis of individuals' age, sex, having been abroad or not in the past 6 months, and ethnicity. Shotgun metagenomic sequencing was done and taxonomic species composition and functional annotations (ie, microbial metabolism and carbohydrate-active enzymes) were determined. Targeted quantitative metabolic profiling (proton nuclear magnetic resonance spectroscopy) was done to investigate metabolomic profiles and combinations of univariate (t test and Wilcoxon test), multivariate (principal coordinates analysis, permutational multivariate analysis of variance, and partial least-squares discriminant analysis) and machine-learning approaches (least absolute shrinkage and selection operator and random forests) were used to analyse all the molecular data. FINDINGS: No differences in diversity parameters or in relative abundance were observed between ESBL-positive and ESBL-negative groups based on bacterial species-level composition. Machine-learning approaches using microbiota composition did not accurately predict ESBL status (area under the receiver operating characteristic curve [AUROC]=0·41) when using either microbiota composition or any of the functional profiles. The metabolome also did not differ between ESBL groups, as assessed by various methods including random forest (AUROC=0·61). INTERPRETATION: By combining multiomics and machine-learning approaches, we conclude that asymptomatic gut carriage of ESBL-producing E coli is not associated with an altered microbiome composition or function. This finding might suggest that microbiome-mediated colonisation resistance against ESBL-producing E coli is not as relevant as it is against other enteropathogens and antibiotic-resistant bacteria. FUNDING: None.


Assuntos
Escherichia coli , Microbioma Gastrointestinal , Adulto , Antibacterianos/farmacologia , Bactérias/metabolismo , Estudos de Casos e Controles , Estudos Transversais , Escherichia coli/genética , Etnicidade , Microbioma Gastrointestinal/genética , Humanos , Metaboloma , beta-Lactamases/genética
9.
J Med Microbiol ; 70(7)2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34269673

RESUMO

Introduction. Staphylococcus aureus is a major cause of hospital infections worldwide. Awareness towards methicillin-resistant S. aureus (MRSA) infections is high but attention towards borderline oxacillin-resistant S. aureus (BORSA) is limited, possibly due to an underestimated clinical relevance, presumption of low incidence and diagnostic limitations.Gap statement. BORSA surveillance has not been routinely implemented, and thus consensus with regard to a definition and infection control measures is lacking.Aim. Our goals were to investigate the occurrence, molecular characteristics and clinical manifestations of BORSA infections in the hospital setting.Methodology. Following an increased incidence in 2016, BORSA cases in 2014/2016 (in our institution) were more specifically evaluated. Medical records were reviewed to investigate epidemiological links, clinical characteristics and outcomes. Resistance and virulence markers were assessed by whole genome sequencing (WGS). Conventional methods: amplified fragment length polymorphism (AFLP) ; multilocus sequence typing (MLST) and multiple locus variable-number tandem repeat analysis (MLVA) were compared with core genome MLST (cgMLST) and whole-genome single nucleotide polymorphism (wgSNP) analysis to confirm genetic clusters.Results. From 2009 to 2013, BORSA comprised 0.1 % of all clinical S. aureus strains. In 2016, the incidence was six-fold higher in comparison to the baseline. Whole-genome SNP and cgMLST confirmed two BORSA clusters among patients with dermatological conditions. Patients with BORSA presented with skin infections, and one case developed a severe invasive infection with a fatal outcome. Infection control measures successfully prevented further transmission in both clusters. WGS findings showed that BORSA strains carried multiple resistance and virulence genes with increased pathogenic potential.Conclusion. WGS and cgMLST effectively characterized and confirmed BORSA clusters among at-risk patients with clinical manifestations ranging from mild skin infections to life-threatening bacteraemia. Clinical awareness and active monitoring are therefore warranted for the timely implementation of infection control measures to prevent BORSA transmission in high-risk patients.


Assuntos
Antibacterianos/farmacologia , Infecção Hospitalar/microbiologia , Farmacorresistência Bacteriana , Oxacilina/farmacologia , Infecções Estafilocócicas/microbiologia , Staphylococcus aureus/genética , Staphylococcus aureus/isolamento & purificação , Infecção Hospitalar/transmissão , Genoma Bacteriano , Hospitais/estatística & dados numéricos , Humanos , Testes de Sensibilidade Microbiana , Tipagem de Sequências Multilocus , Polimorfismo de Nucleotídeo Único , Infecções Estafilocócicas/transmissão , Staphylococcus aureus/classificação , Staphylococcus aureus/efeitos dos fármacos , Sequenciamento Completo do Genoma
10.
Genome Med ; 13(1): 54, 2021 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-33827686

RESUMO

BACKGROUND: Nursing home residents have increased rates of intestinal colonisation with multidrug-resistant organisms (MDROs). We assessed the colonisation and spread of MDROs among this population, determined clinical risk factors for MDRO colonisation and investigated the role of the gut microbiota in providing colonisation resistance against MDROs. METHODS: We conducted a prospective cohort study in a Dutch nursing home. Demographical, epidemiological and clinical data were collected at four time points with 2-month intervals (October 2016-April 2017). To obtain longitudinal data, faecal samples from residents were collected for at least two time points. Ultimately, twenty-seven residents were included in the study and 93 faecal samples were analysed, of which 27 (29.0%) were MDRO-positive. Twelve residents (44.4%) were colonised with an MDRO at at least one time point throughout the 6-month study. RESULTS: Univariable generalised estimating equation logistic regression indicated that antibiotic use in the previous 2 months and hospital admittance in the previous year were associated with MDRO colonisation. Characterisation of MDRO isolates through whole-genome sequencing revealed Escherichia coli sequence type (ST)131 to be the most prevalent MDRO and ward-specific clusters of E. coli ST131 were identified. Microbiota analysis by 16S rRNA gene amplicon sequencing revealed no differences in alpha or beta diversity between MDRO-positive and negative samples, nor between residents who were ever or never colonised. Three bacterial taxa (Dorea, Atopobiaceae and Lachnospiraceae ND3007 group) were more abundant in residents never colonised with an MDRO throughout the 6-month study. An unexpectedly high abundance of Bifidobacterium was observed in several residents. Further investigation of a subset of samples with metagenomics showed that various Bifidobacterium species were highly abundant, of which B. longum strains remained identical within residents over time, but were different between residents. CONCLUSIONS: Our study provides new evidence for the role of the gut microbiota in colonisation resistance against MDROs in the elderly living in a nursing home setting. Dorea, Atopobiaceae and Lachnospiraceae ND3007 group may be associated with protection against MDRO colonisation. Furthermore, we report a uniquely high abundance of several Bifidobacterium species in multiple residents and excluded the possibility that this was due to probiotic supplementation.


Assuntos
Farmacorresistência Bacteriana Múltipla , Microbioma Gastrointestinal , Casas de Saúde , Bactérias/genética , Bactérias/isolamento & purificação , Farmacorresistência Bacteriana Múltipla/genética , Fezes/microbiologia , Microbioma Gastrointestinal/genética , Genoma Bacteriano , Humanos , Metagenoma , Testes de Sensibilidade Microbiana , Países Baixos , Análise de Componente Principal , RNA Ribossômico 16S/genética , Fatores de Risco , Fatores de Tempo , Sequenciamento Completo do Genoma
11.
Lancet Infect Dis ; 21(5): 711-721, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33275940

RESUMO

BACKGROUND: On June 13, 2019, the US Food and Drug Administration issued a warning after transfer of faeces containing an extended-spectrum ß-lactamase (ESBL)-producing Escherichia coli by faecal microbiota transplantation led to bacteraemia in two immunocompromised patients. Consequently, we evaluated the effectiveness of the faeces donor-screening protocol of the Netherlands Donor Faeces Bank, which consists of screening of donors for multidrug-resistant organisms every 3 months, combined with additional screening on indication (eg, after travelling abroad) and application of a quarantine period for all faecal suspensions delivered within those 3 months. METHODS: We did a retrospective cohort study of data collected between Jan 1, 2015, and Oct 14, 2019, on the multidrug-resistant organism testing results of donor faeces. Additionally, we tested previously quarantined faecal suspensions approved for faecal microbiota transplantation between Dec 12, 2016, and May 1, 2019, for the presence of multidrug-resistant organisms using both aselective and selective broth enrichment media. Whole-genome sequencing with core-genome multilocus sequence typing (cgMLST) was done on all multidrug-resistant isolates. FINDINGS: Among initial screenings, six (9%) of 66 tested individuals were positive for multidrug-resistant organisms and 11 (17%) of 66 tested individuals were positive for multidrug-resistant organisms at any timepoint. Multidrug-resistant organisms were detected in four (25%) of 16 active donors, who had a median donation duration of 268 days (IQR 92 to 366). Among all screening results, 14 (74%) of 19 detected multidrug-resistant organisms were ESBL-producing E coli. 170 (49%) of 344 approved faecal suspensions had corresponding research faeces aliquots available and were tested (from 11 active donors with a median of eight [IQR five to 26] suspensions per donor). No multidrug-resistant organisms were detected in the 170 approved faecal suspensions (one-sided 95% CI 0 to 1·7). cgMLST revealed that all multidrug-resistant organisms were genetically different. INTERPRETATION: Healthy faeces donors can become colonised with multidrug-resistant organisms during donation activities. Our screening protocol did not result in approval of multidrug-resistant organism-positive faecal suspensions for microbiota transplantation. FUNDING: None.


Assuntos
Farmacorresistência Bacteriana Múltipla , Infecções por Escherichia coli/prevenção & controle , Infecções por Escherichia coli/transmissão , Transplante de Microbiota Fecal/métodos , Fezes/microbiologia , Quarentena , Adulto , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Farmacorresistência Bacteriana Múltipla/genética , Escherichia coli/efeitos dos fármacos , Feminino , Humanos , Masculino , Microbiota , Pessoa de Meia-Idade , Tipagem de Sequências Multilocus , Países Baixos , Estudos Retrospectivos , Adulto Jovem
12.
Front Microbiol ; 9: 749, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29740407

RESUMO

Metagenomics poses opportunities for clinical and public health virology applications by offering a way to assess complete taxonomic composition of a clinical sample in an unbiased way. However, the techniques required are complicated and analysis standards have yet to develop. This, together with the wealth of different tools and workflows that have been proposed, poses a barrier for new users. We evaluated 49 published computational classification workflows for virus metagenomics in a literature review. To this end, we described the methods of existing workflows by breaking them up into five general steps and assessed their ease-of-use and validation experiments. Performance scores of previous benchmarks were summarized and correlations between methods and performance were investigated. We indicate the potential suitability of the different workflows for (1) time-constrained diagnostics, (2) surveillance and outbreak source tracing, (3) detection of remote homologies (discovery), and (4) biodiversity studies. We provide two decision trees for virologists to help select a workflow for medical or biodiversity studies, as well as directions for future developments in clinical viral metagenomics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA