Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 22
Filtrar
1.
BMC Microbiol ; 12: 136, 2012 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-22769741

RESUMO

BACKGROUND: PII proteins have a fundamental role in the control of nitrogen metabolism in bacteria, through interactions with different PII targets, controlled by metabolite binding and post-translational modification, uridylylation in most organisms. In the photosynthetic bacterium Rhodospirillum rubrum, the PII proteins GlnB and GlnJ were shown, in spite of their high degree of similarity, to have different requirements for post-translational uridylylation, with respect to the divalent cations, Mg(2+) and Mn(2+). RESULTS: Given the importance of uridylylation in the functional interactions of PII proteins, we have hypothesized that the difference in the divalent cation requirement for the uridylylation is related to efficient binding of Mg/Mn-ATP to the PII proteins. We concluded that the amino acids at positions 42 and 85 in GlnJ and GlnB (in the vicinity of the ATP binding site) influence the divalent cation requirement for uridylylation catalyzed by GlnD. CONCLUSIONS: Efficient binding of Mg/Mn-ATP to the PII proteins is required for uridylylation by GlnD. Our results show that by simply exchanging two amino acid residues, we could modulate the divalent cation requirement in the uridylylation of GlnJ and GlnB.Considering that post-translational uridylylation of PII proteins modulates their signaling properties, a different requirement for divalent cations in the modification of GlnB and GlnJ adds an extra regulatory layer to the already intricate control of PII function.


Assuntos
Proteínas de Bactérias/metabolismo , Cátions Bivalentes/metabolismo , Proteínas PII Reguladoras de Nitrogênio/metabolismo , Processamento de Proteína Pós-Traducional , Rhodospirillum rubrum/fisiologia , Transdução de Sinais , Sequência de Aminoácidos , Magnésio/metabolismo , Manganês/metabolismo , Modelos Biológicos , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Rhodospirillum rubrum/metabolismo , Alinhamento de Sequência
2.
Proc Natl Acad Sci U S A ; 106(34): 14247-52, 2009 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-19706507

RESUMO

ADP-ribosylation is a ubiquitous regulatory posttranslational modification involved in numerous key processes such as DNA repair, transcription, cell differentiation, apoptosis, and the pathogenic mechanism of certain bacterial toxins. Despite the importance of this reversible process, very little is known about the structure and mechanism of the hydrolases that catalyze removal of the ADP-ribose moiety. In the phototrophic bacterium Rhodospirillum rubrum, dinitrogenase reductase-activating glycohydrolase (DraG), a dimanganese enzyme that reversibly associates with the cell membrane, is a key player in the regulation of nitrogenase activity. DraG has long served as a model protein for ADP-ribosylhydrolases. Here, we present the crystal structure of DraG in the holo and ADP-ribose bound forms. We also present the structure of a reaction intermediate analogue and propose a detailed catalytic mechanism for protein de-ADP-ribosylation involving ring opening of the substrate ribose. In addition, the particular manganese coordination in DraG suggests a rationale for the enzyme's preference for manganese over magnesium, although not requiring a redox active metal for the reaction.


Assuntos
Adenosina Difosfato Ribose/química , Proteínas de Bactérias/química , N-Glicosil Hidrolases/química , Rhodospirillum rubrum/enzimologia , Adenosina Difosfato Ribose/metabolismo , Proteínas de Bactérias/metabolismo , Western Blotting , Catálise , Cristalização , Ligantes , Manganês/química , Manganês/metabolismo , Modelos Químicos , Modelos Moleculares , Estrutura Molecular , Mutação , N-Glicosil Hidrolases/genética , N-Glicosil Hidrolases/metabolismo , Ligação Proteica , Multimerização Proteica , Estrutura Terciária de Proteína , Rhodospirillum rubrum/genética , Ribose/química , Ribose/metabolismo
3.
J Proteome Res ; 10(6): 2703-14, 2011 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-21443180

RESUMO

The chromatophore membrane of the photosynthetic diazotroph Rhodospirillum rubrum is of vital importance for a number of central processes, including nitrogen fixation. Using a novel amphiphile, we have identified protein complexes present under different nitrogen availability conditions by the use of two-dimensional Blue Native/SDS-PAGE and NSI-LC-LTQ-Orbitrap mass spectrometry. We have identified several membrane protein complexes, including components of the ATP synthase, reaction center, light harvesting, and NADH dehydrogenase complexes. Additionally, we have identified differentially expressed proteins, such as subunits of the succinate dehydrogenase complex and other TCA cycle enzymes that are usually found in the cytosol, thus hinting at a possible association to the membrane in response to nitrogen deficiency. We propose a redox sensing mechanism that can influence the membrane subproteome in response to nitrogen availability.


Assuntos
Cromatóforos Bacterianos/metabolismo , Proteínas de Membrana/metabolismo , Nitrogênio/metabolismo , Rhodospirillum rubrum/metabolismo , Complexos de ATP Sintetase/química , Complexos de ATP Sintetase/metabolismo , Cloreto de Amônio/metabolismo , Cromatóforos Bacterianos/química , Ciclo do Ácido Cítrico , Complexo I de Transporte de Elétrons/química , Complexo I de Transporte de Elétrons/metabolismo , Eletroforese em Gel Bidimensional , Flavoproteínas/química , Flavoproteínas/metabolismo , Complexos de Proteínas Captadores de Luz/química , Complexos de Proteínas Captadores de Luz/metabolismo , Proteínas de Membrana/química , Proteínas de Membrana Transportadoras/química , Proteínas de Membrana Transportadoras/metabolismo , Fixação de Nitrogênio , Rhodospirillum rubrum/crescimento & desenvolvimento , Frações Subcelulares/química
4.
Microbiology (Reading) ; 157(Pt 6): 1834-1840, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21393366

RESUMO

Rhodospirillum rubrum, a photosynthetic diazotroph, is able to regulate nitrogenase activity in response to environmental factors such as ammonium ions or darkness, the so-called switch-off effect. This is due to reversible modification of the Fe-protein, one of the two components of nitrogenase. The signal transduction pathway(s) in this regulatory mechanism is not fully understood, especially not in response to darkness. We have previously shown that the switch-off response and metabolic state differ between cells grown with dinitrogen or glutamate as the nitrogen source, although both represent poor nitrogen sources. In this study we show that pyruvate affects the response to darkness in cultures grown with glutamate as nitrogen source, leading to a response similar to that in cultures grown with dinitrogen. The effects are related to P(II) protein uridylylation and glutamine synthetase activity. We also show that pyruvate induces de novo protein synthesis and that inhibition of pyruvate formate-lyase leads to loss of nitrogenase activity in the dark.


Assuntos
Escuridão , Regulação Enzimológica da Expressão Gênica , Nitrogenase/metabolismo , Piruvatos/farmacologia , Rhodospirillum rubrum/enzimologia , Meios de Cultura , Regulação Bacteriana da Expressão Gênica , Regulação Enzimológica da Expressão Gênica/efeitos dos fármacos , Ácido Glutâmico/metabolismo , Fixação de Nitrogênio/efeitos dos fármacos , Nitrogenase/efeitos dos fármacos , Proteínas PII Reguladoras de Nitrogênio/metabolismo , Piruvatos/metabolismo , Rhodospirillum rubrum/efeitos dos fármacos , Rhodospirillum rubrum/crescimento & desenvolvimento , Rhodospirillum rubrum/fisiologia , Transdução de Sinais
5.
J Bacteriol ; 192(5): 1463-6, 2010 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-20023013

RESUMO

Nitrogen fixation and ammonium assimilation in Rhodospirillum rubrum are regulated in response to changes in light availability, and we show that the response in terms of glutamine synthetase activity and P(II) modification is dependent on the nitrogen source used for growth, N(2) or glutamate, although both lead to nitrogenase derepression.


Assuntos
Regulação Bacteriana da Expressão Gênica , Luz , Nitrogenase/metabolismo , Compostos de Amônio Quaternário/metabolismo , Rhodospirillum rubrum/fisiologia , Rhodospirillum rubrum/efeitos da radiação , Regulação Enzimológica da Expressão Gênica , Glutamato-Amônia Ligase/metabolismo , Ácido Glutâmico/metabolismo , Nitrogênio/metabolismo
6.
FEBS J ; 286(6): 1214-1229, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30633437

RESUMO

The ammonium-dependent posttranslational regulation of nitrogenase activity in Azospirillum brasilense requires dinitrogenase reductase ADP-ribosyl transferase (DraT) and dinitrogenase reductase ADP-glycohydrolase (DraG). These enzymes are reciprocally regulated by interaction with the PII proteins, GlnB and GlnZ. In this study, purified ADP-ribosylated Fe-protein was used as substrate to study the mechanism involved in the regulation of A. brasilense DraG in vitro. The data show that DraG is partially inhibited by GlnZ and that DraG inhibition is further enhanced by the simultaneous presence of GlnZ and AmtB. These results are the first to demonstrate experimentally that DraG inactivation requires the formation of a ternary DraG-GlnZ-AmtB complex in vitro. Previous structural data have revealed that when the DraG-GlnZ complex associates with AmtB, the flexible T-loops of the trimeric GlnZ bind to AmtB and become rigid; these molecular events stabilize the DraG-GlnZ complex, resulting in DraG inactivation. To determine whether restraining the flexibility of the GlnZ T-loops is a limiting factor in DraG inhibition, we used a GlnZ variant that carries a partial deletion of the T-loop (GlnZΔ42-54). However, although the GlnZΔ42-54 variant was more effective in inhibiting DraG in vitro, it bound to DraG with a slightly lower affinity than does wild-type GlnZ and was not competent to completely inhibit DraG activity either in vitro or in vivo. We, therefore, conclude that the formation of a ternary complex between DraG-GlnZ-AmtB is necessary for the inactivation of DraG.


Assuntos
ADP Ribose Transferases/metabolismo , Compostos de Amônio/metabolismo , Azospirillum brasilense/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Transporte de Cátions/metabolismo , N-Glicosil Hidrolases/metabolismo , Proteínas PII Reguladoras de Nitrogênio/metabolismo , ADP Ribose Transferases/genética , Azospirillum brasilense/genética , Azospirillum brasilense/crescimento & desenvolvimento , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Transporte de Cátions/genética , Regulação Bacteriana da Expressão Gênica , N-Glicosil Hidrolases/química , N-Glicosil Hidrolases/genética , Proteínas PII Reguladoras de Nitrogênio/genética , Ligação Proteica , Conformação Proteica , Transdução de Sinais
7.
J Bacteriol ; 190(1): 434-7, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-17951375

RESUMO

Adenylyltransferase (GlnE) catalyzes the reversible adenylylation of glutamine synthetase. In this report we present, for the first time, evidence for a peroxiredoxin activity of Rhodospirillum rubrum GlnE, through the carboxyl-terminal AhpC/thiol-specific antioxidant (TSA) domain. The combination of GlnE and AhpC/TSA domains within the same polypeptide constitutes a unique domain architecture that has not previously been identified among proteobacteria.


Assuntos
Nicotinamida-Nucleotídeo Adenililtransferase/metabolismo , Peroxirredoxinas/metabolismo , Rhodospirillum rubrum/enzimologia , Domínio Catalítico , Escherichia coli/enzimologia , Escherichia coli/metabolismo , Glutamato-Amônia Ligase/metabolismo , Peróxido de Hidrogênio/metabolismo , Cinética , Nicotinamida-Nucleotídeo Adenililtransferase/química , Peroxidases/metabolismo , Fotossíntese , Espécies Reativas de Oxigênio/metabolismo
8.
FEMS Microbiol Lett ; 365(16)2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-30010831

RESUMO

Metabolic regulation of Rhodospirillum rubrum nitrogenase is mediated at the post-translational level by the enzymes DraT and DraG when subjected to changes in nitrogen or energy status. DraT is activated during switch-off, while DraG is inactivated by reversible membrane association. We confirm here that the ammonium transporter, AmtB1, rather than its paralog AmtB2, is required for ammonium induced switch-off. Amongst several substitutions at the N100 position in DraG, only N100K failed to locate to the membrane following ammonium shock, suggesting loss of interaction through charge repulsion. When switch-off was induced by lowering energy levels, either by darkness during photosynthetic growth or oxygen depletion under respiratory conditions, reversible membrane sequestration of DraG was independent of AmtB proteins and occurred even under non-diazotrophic conditions. We propose that under these conditions, changes in redox status or possibly membrane potential induce interactions between DraG and another membrane protein in response to the energy status.


Assuntos
Proteínas de Bactérias/metabolismo , Membrana Celular/metabolismo , Proteínas de Membrana Transportadoras/metabolismo , N-Glicosil Hidrolases/metabolismo , Rhodospirillum rubrum/enzimologia , Motivos de Aminoácidos , Compostos de Amônio/metabolismo , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Metabolismo Energético , Regulação Bacteriana da Expressão Gênica , Proteínas de Membrana Transportadoras/genética , N-Glicosil Hidrolases/química , N-Glicosil Hidrolases/genética , Fixação de Nitrogênio , Ligação Proteica , Rhodospirillum rubrum/genética , Rhodospirillum rubrum/metabolismo
9.
FEBS J ; 274(10): 2449-60, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17419734

RESUMO

Ammonium assimilation is tightly regulated in nitrogen-fixing bacteria; the target of regulation is primarily the activity of the key enzyme glutamine synthetase that is regulated by reversible covalent modification by AMP groups in reactions catalysed by the bifunctional adenylyltransferase (ATase). The properties and regulation of ATase from Escherichia coli have been studied in great detail. We have investigated the regulation of ATase from Rhodospirillum rubrum, a photosynthetic nitrogen-fixing bacterium. In this diazotroph, nitrogenase is regulated at the metabolic level in addition to the transcriptional regulation operating in all diazotrophic bacteria, which makes understanding the regulatory features of nitrogen assimilation even more interesting. We show that in R. rubrum, in contrast to the E. coli system, ATase is primarily regulated by alpha-ketoglutarate and that glutamine has no effect on neither the adenylylation nor the deadenylylation of glutamine synthetase. Furthermore, the role of the regulatory P(II) proteins is only to stimulate the adenylylation reaction, as there is no effect on the reverse reaction. We propose that in R. rubrum and possibly other diazotrophs alpha-ketoglutarate plays the central role in the regulation of ATase and thus glutamine synthetase activity.


Assuntos
Glutamato-Amônia Ligase/metabolismo , Glutamina/farmacologia , Ácidos Cetoglutáricos/farmacologia , Nucleotidiltransferases/metabolismo , Proteínas PII Reguladoras de Nitrogênio/fisiologia , Sequência de Aminoácidos , Escherichia coli/metabolismo , Glutamato-Amônia Ligase/isolamento & purificação , Ácidos Cetoglutáricos/metabolismo , Dados de Sequência Molecular , Rhodospirillum rubrum/enzimologia , Alinhamento de Sequência
10.
FEMS Microbiol Lett ; 260(1): 30-5, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16790015

RESUMO

In the photosynthetic bacterium Rhodospirillum rubrum, as in many other diazotrophs, electron transport to nitrogenase has not been characterized in great detail. In this study, we show that there are two pathways operating in R. rubrum. The products of the fix genes constitute the major pathway operating under heterotrophic conditions, whereas a pyruvate:ferredoxin oxidoreductase, encoded by the nifJ gene, may play a central role under anaerobic conditions in the dark. In both systems, ferredoxin N is the main direct electron donor to dinitrogenase reductase. Furthermore, we suggest from studying mutants lacking components in one or both systems under different conditions, that the Fix system operates most efficiently under conditions when a proton motive force is generated. A model for our current view of the electron transfer pathways in R. rubrum is presented.


Assuntos
Proteínas de Bactérias/fisiologia , Transporte de Elétrons , Nitrogenase/metabolismo , Rhodospirillum rubrum/metabolismo
11.
FEMS Microbiol Lett ; 245(2): 345-51, 2005 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-15837392

RESUMO

In our efforts to determine the components participating in the electron transport to nitrogenase in Rhodospirillum rubrum, we have identified a gene encoding a new ferredoxin. We have generated mutants in both the new ferredoxin and ferredoxin I and demonstrate that the new ferredoxin, FdN and not the previously identified FdI is the main donor of electrons to nitrogenase.


Assuntos
Transporte de Elétrons , Ferredoxinas/genética , Ferredoxinas/fisiologia , Nitrogenase/metabolismo , Rhodospirillum rubrum/enzimologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/fisiologia , Mutagênese Insercional , Mutação , Rhodospirillum rubrum/genética
12.
FEMS Microbiol Lett ; 253(2): 273-9, 2005 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-16243452

RESUMO

In the photosynthetic bacterium Rhodospirillum rubrum nitrogenase activity is regulated by reversible ADP-ribosylation of dinitrogenase reductase in response to external so called "switch-off" effectors. Activation of the modified, inactive form is catalyzed by dinitrogenase reductase activating glycohydrolase (DRAG) which removes the ADP-ribose moiety. This study addresses the signal transduction between external effectors and DRAG. R. rubrum, wild-type and P(II) mutant strains, were studied with respect to DRAG localization. We conclude that GlnJ clearly has an effect on the association of DRAG to the membrane in agreement with the effect on regulation of nitrogenase activity. Furthermore, we have generated a R. rubrum mutant lacking the putative ammonium transporter AmtB1 which was shown not to respond to "switch-off" effectors; no loss of nitrogenase activity and no ADP-ribosylation. Interestingly, DRAG was mainly localized to the cytosol in this mutant. Overall the results support our model in which association to the membrane is part of the mechanism regulating DRAG activity.


Assuntos
Proteínas de Bactérias/metabolismo , N-Glicosil Hidrolases/metabolismo , Nitrogenase/metabolismo , Rhodospirillum rubrum/enzimologia , Proteínas de Bactérias/genética , Proteínas de Membrana/fisiologia , Mutagênese Insercional , Rhodospirillum rubrum/genética , Rhodospirillum rubrum/crescimento & desenvolvimento
13.
FEBS J ; 280(15): 3484-90, 2013 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-23574616

RESUMO

Nitrogen fixation is the vital biochemical process in which atmospheric molecular nitrogen is made available to the biosphere. The process is highly energetically costly and thus tightly regulated. The activity of the key enzyme, nitrogenase, is controlled by reversible mono-ADP-ribosylation of one of its components, the Fe protein. This protein provides the other component, the MoFe protein, with the electrons required for the reduction of molecular nitrogen. The Fe-protein is ADP-ribosylated and de-ADP-ribosylated by dinitrogenase reductase ADP-ribosyl transferase and dinitrogenase reductase activating glycohydrolase, respectively. Here we review the current biochemical and structural knowledge of this central regulatory reaction.


Assuntos
Adenosina Difosfato Ribose/metabolismo , Nitrogenase/metabolismo , Processamento de Proteína Pós-Traducional , ADP Ribose Transferases/química , ADP Ribose Transferases/metabolismo , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Humanos , Modelos Moleculares , N-Glicosil Hidrolases/química , N-Glicosil Hidrolases/metabolismo , Nitrogenase/química , Estrutura Quaternária de Proteína
14.
Res Microbiol ; 161(8): 651-9, 2010 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-20600859

RESUMO

2-Oxoglutarate plays a central role as a signal in the regulation of nitrogen metabolism in the phototrophic diazotroph Rhodospirillum rubrum. In order to further study the role of this metabolite, we have constructed an R. rubrum strain that has the capacity to grow on 2-oxoglutarate as sole carbon source, in contrast to wild-type R. rubrum. This strain has the same growth characteristics as wild-type with malate as carbon source, but showed clear metabolic differences when 2-oxoglutarate was used. Among other things, the regulation of nitrogen metabolism is altered, which can be related to different modification profiles of the regulatory PII proteins.


Assuntos
Proteínas de Bactérias/metabolismo , Ácidos Cetoglutáricos/metabolismo , Fixação de Nitrogênio , Nitrogênio/metabolismo , Proteoma , Rhodospirillum rubrum/crescimento & desenvolvimento , Rhodospirillum rubrum/metabolismo , Acetilcoenzima A/biossíntese , Carbono/metabolismo , Ciclo do Ácido Cítrico , Meios de Cultura/química , Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Glutamato Sintase/metabolismo , Glutamato-Amônia Ligase/metabolismo , Plasmídeos , Processamento de Proteína Pós-Traducional , Rhodospirillum rubrum/genética , Transdução de Sinais
15.
Res Microbiol ; 160(8): 581-4, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19761831

RESUMO

In the nitrogen-fixing bacterium Rhodospirillum rubrum, the GlnE adenylyltransferase (encoded by glnE) catalyzes reversible adenylylation of glutamine synthetase, thereby regulating nitrogen assimilation. We have generated glnE mutant strains that are unable to adenylylate glutamine synthetase (GS). Surprisingly, the activity of GS was lower in the mutants than in the wild type, even when grown in nitrogen-fixing conditions. Our results support the proposal that R. rubrum can only cope with the absence of an adenylylation system in the presence of lowered GS expression or activity. In general terms, this report also provides further support for the central role of GS in bacterial metabolism.


Assuntos
Glutamato-Amônia Ligase/metabolismo , Nucleotidiltransferases/genética , Rhodospirillum rubrum/enzimologia , Deleção de Genes , Fixação de Nitrogênio , Rhodospirillum rubrum/genética
16.
J Proteome Res ; 7(8): 3267-75, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18570453

RESUMO

Forty-four differentially expressed proteins have been identified in the photosynthetic diazotroph Rhodospirillum rubrum grown anaerobic and photoheterotrophically, with different nitrogen sources, using 2D-PAGE and MALDI-TOF, from gels containing an average of 679 +/- 52 (in N(+)) and 619 +/- 37 (in N(-)) protein spots for each gel. A higher level of expression was found under nitrogen-rich growth, for proteins involved in carbon metabolism (reductive tricarboxylic acid cycle, CO(2) fixation, and poly-beta-hydroxybutyrate metabolism) and amino acid metabolism. The key enzymes RuBisCO and alpha-ketoglutarate synthase were found to be present in higher amounts in nitrogen-rich conditions. Ntr and Nif regulated proteins, such as glutamine synthetase and nitrogenase, were, as expected, induced under nitrogen-fixing conditions and glutamate dehydrogenase was down regulated. A novel 2Fe-2S ferredoxin with unknown function was identified from nitrogen-fixing cultures. In addition to differential expression, two of the identified proteins revealed variable p I values in response to the nitrogen source used.


Assuntos
Proteínas de Bactérias/biossíntese , Nitrogênio/metabolismo , Rhodospirillum rubrum/metabolismo , Transportadores de Cassetes de Ligação de ATP/biossíntese , Aminoácidos/metabolismo , Anaerobiose , Carbono/metabolismo , Meios de Cultura , Eletroforese em Gel Bidimensional , Técnicas In Vitro , Proteômica , Rhodospirillum rubrum/crescimento & desenvolvimento , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz
17.
Microbiology (Reading) ; 154(Pt 8): 2336-2347, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18667566

RESUMO

The PII family of signal transduction proteins is widespread amongst the three domains of life, and its members have fundamental roles in the general control of nitrogen metabolism. These proteins exert their regulatory role by direct protein-protein interaction with a multitude of cellular targets. The interactions are dependent on the binding of metabolites such as ATP, ADP and 2-oxoglutarate (2-OG), and on whether or not the PII protein is modified. In the photosynthetic nitrogen-fixing bacterium Rhodospirillum rubrum three PII paralogues have been identified and termed GlnB, GlnJ and GlnK. In this report we analysed the interaction of GlnJ with known cellular targets such as the ammonium transporter AmtB1, the adenylyltransferase GlnE and the uridylyltransferase GlnD. Our results show that the interaction of GlnJ with cellular targets is regulated in vitro by the concentrations of manganese and 2-OG and the ADP : ATP ratio. Furthermore, we show here for the first time, to our knowledge, that in the interactions of GlnJ with the three different partners, the energy signal (ADP : ATP ratio) in fact overrides the carbon/nitrogen signal (2-OG). In addition, by generating specific amino acid substitutions in GlnJ we show that the interactions with different cellular targets are differentially affected, and the possible implications of these results are discussed. Our results are important to further the understanding of the regulatory role of PII proteins in R. rubrum, a photosynthetic bacterium in which the nitrogen fixation process and its intricate control mechanisms make the regulation of nitrogen metabolism even more complex than in other studied bacteria.


Assuntos
Nucleotídeos de Adenina/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Ácidos Cetoglutáricos/metabolismo , Manganês/metabolismo , Nucleotidiltransferases/metabolismo , Rhodospirillum rubrum/metabolismo , Transdução de Sinais , Proteínas de Bactérias/genética , Proteínas de Transporte de Cátions/genética , Nucleotidiltransferases/genética , Proteínas PII Reguladoras de Nitrogênio/genética , Proteínas PII Reguladoras de Nitrogênio/metabolismo , Rhodospirillum rubrum/enzimologia , Rhodospirillum rubrum/genética
18.
J Bacteriol ; 189(9): 3471-8, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17337583

RESUMO

P(II) proteins have been shown to be key players in the regulation of nitrogen fixation and ammonia assimilation in bacteria. The mode by which these proteins act as signals is by being in either a form modified by UMP or the unmodified form. The modification, as well as demodification, is catalyzed by a bifunctional enzyme encoded by the glnD gene. The regulation of this enzyme is thus of central importance. In Rhodospirillum rubrum, three P(II) paralogs have been identified. In this study, we have used purified GlnD and P(II) proteins from R. rubrum, and we show that for the uridylylation activity of R. rubrum GlnD, alpha-ketoglutarate is the main signal, whereas glutamine has no effect. This is in contrast to, e.g., the Escherichia coli system. Furthermore, we show that all three P(II) proteins are uridylylated, although the efficiency is dependent on the cation present. This difference may be of importance in understanding the effects of the P(II) proteins on the different target enzymes. Furthermore, we show that the deuridylylation reaction is greatly stimulated by glutamine and that Mn(2+) is required.


Assuntos
Cátions Bivalentes/farmacologia , Ácidos Cetoglutáricos/farmacologia , Proteínas PII Reguladoras de Nitrogênio/metabolismo , Rhodospirillum rubrum/enzimologia , Transferases/metabolismo , Uridina Monofosfato/metabolismo , Proteínas de Bactérias/isolamento & purificação , Proteínas de Bactérias/metabolismo , Ensaio de Desvio de Mobilidade Eletroforética , Ativadores de Enzimas/farmacologia , Escherichia coli/enzimologia , Glutamina/farmacologia , Proteínas PII Reguladoras de Nitrogênio/isolamento & purificação , Transferases/isolamento & purificação
19.
Microbiology (Reading) ; 142 ( Pt 5): 1265-1272, 1996 May.
Artigo em Inglês | MEDLINE | ID: mdl-8704966

RESUMO

The PII protein, encoded by glnB, has a central role in the control of nitrogen metabolism in nitrogen-fixing prokaryotes. The glnB gene of Rhodospirillum rubrum was isolated and sequenced. The deduced amino acid sequence had very high sequence identity to other PII proteins. The glnA gene, encoding glutamine synthetase, was located 135 bp downstream of glnB and was partially sequenced. glnB is cotranscribed with glnA from a promoter with high similarity to the sigma 54-dependent promoter consensus sequence. A putative sigma 70 promoter was also identified further upstream of glnB. Northern blotting analyses showed that in addition glnA is either transcribed from an unidentified promoter or, more likely, that the glnBA transcript is processed to give the glnA mRNA. The total level of the two transcripts was much higher in nitrogen-fixing cells than in ammonia-grown cells.


Assuntos
Proteínas de Bactérias/biossíntese , Proteínas de Ligação a DNA , Genes Bacterianos , Glutamato-Amônia Ligase/biossíntese , Fixação de Nitrogênio/genética , Rhodospirillum rubrum/genética , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Sequência de Bases , Sequência Consenso , RNA Polimerases Dirigidas por DNA/metabolismo , Glutamato-Amônia Ligase/genética , Dados de Sequência Molecular , Conformação de Ácido Nucleico , Proteínas PII Reguladoras de Nitrogênio , Regiões Promotoras Genéticas , RNA Polimerase Sigma 54 , Processamento Pós-Transcricional do RNA , RNA Bacteriano/genética , RNA Bacteriano/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Fator sigma/metabolismo , Transcrição Gênica
20.
J Bacteriol ; 186(7): 2052-60, 2004 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-15028689

RESUMO

In our efforts to identify the components participating in electron transport to nitrogenase in Rhodospirillum rubrum, we used mini-Tn5 mutagenesis followed by metronidazole selection. One of the mutants isolated, SNT-1, exhibited a decreased growth rate and about 25% of the in vivo nitrogenase activity compared to the wild-type values. The in vitro nitrogenase activity was essentially wild type, indicating that the mutation affects electron transport to nitrogenase. Sequencing showed that the Tn5 insertion is located in a region with a high level of similarity to fixC, and extended sequencing revealed additional putative fix genes, in the order fixABCX. Complementation of SNT-1 with the whole fix gene cluster in trans restored wild-type nitrogenase activity and growth. Using Western blotting, we demonstrated that expression of fixA and fixB occurs only under conditions under which nitrogenase also is expressed. SNT-1 was further shown to produce larger amounts of both ribulose 1,5-bisphosphate carboxylase/oxygenase and polyhydroxy alkanoates than the wild type, indicating that the redox status is affected in this mutant. Using Western blotting, we found that FixA and FixB are soluble proteins, whereas FixC most likely is a transmembrane protein. We propose that the fixABCX genes encode a membrane protein complex that plays a central role in electron transfer to nitrogenase in R. rubrum. Furthermore, we suggest that FixC is the link between nitrogen fixation and the proton motive force generated in the photosynthetic reactions.


Assuntos
Proteínas de Bactérias/genética , Transporte de Elétrons , Genes Bacterianos , Proteínas de Membrana/genética , Nitrogenase/metabolismo , Rhodospirillum rubrum/metabolismo , Proteínas de Bactérias/metabolismo , Elementos de DNA Transponíveis , Regulação Bacteriana da Expressão Gênica , Proteínas de Membrana/metabolismo , Metronidazol/farmacologia , Família Multigênica , Mutagênese Insercional , Fixação de Nitrogênio , Rhodospirillum rubrum/efeitos dos fármacos , Rhodospirillum rubrum/genética , Rhodospirillum rubrum/crescimento & desenvolvimento , Frações Subcelulares/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA