Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Mol Pharmacol ; 98(1): 38-48, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32434851

RESUMO

Aquaporin-1 (AQP1) dual water and ion channels enhance migration and invasion when upregulated in leading edges of certain classes of cancer cells. Work here identifies structurally related furan compounds as novel inhibitors of AQP1 ion channels. 5-Hydroxymethyl-2-furfural (5HMF), a component of natural medicinal honeys, and three structurally related compounds, 5-nitro-2-furoic acid (5NFA), 5-acetoxymethyl-2-furaldehyde (5AMF), and methyl-5-nitro-2-furoate (M5NF), were analyzed for effects on water and ion channel activities of human AQP1 channels expressed in Xenopus oocytes. Two-electrode voltage clamp showed dose-dependent block of the AQP1 ion current by 5HMF (IC50 0.43 mM), 5NFA (IC50 1.2 mM), and 5AMF (IC50 ∼3 mM) but no inhibition by M5NF. In silico docking predicted the active ligands interacted with glycine 165, located in loop D gating domains surrounding the intracellular vestibule of the tetrameric central pore. Water fluxes through separate intrasubunit pores were unaltered by the furan compounds (at concentrations up to 5 mM). Effects on cell migration, invasion, and cytoskeletal organization in vitro were tested in high-AQP1-expressing cancer lines, colon cancer (HT29) and AQP1-expressing breast cancer (MDA), and low-AQP1-expressing SW480. 5HMF, 5NFA, and 5AMF selectively impaired cell motility in the AQP1-enriched cell lines. In contrast, M5NF immobilized all the cancer lines by disrupting actin cytoskeleton. No reduction in cell viability was observed at doses that were effective in blocking motility. These results define furans as a new class of AQP1 ion channel inhibitors for basic research and potential lead compounds for development of therapeutic agents targeting aquaporin channel activity. SIGNIFICANCE STATEMENT: 5-Hydroxymethyl-2-furfural (5HMF), a component of natural medicinal honeys, blocks the ion conductance but not the water flux through human Aquaporin-1 (AQP1) channels and impairs AQP1-dependent cell migration and invasiveness in cancer cell lines. Analyses of 5HMT and structural analogs demonstrate a structure-activity relationship for furan compounds, supported by in silico docking modeling. This work identifies new low-cost pharmacological antagonists for AQP1 available to researchers internationally. Furans merit consideration as a new class of therapeutic agents for controlling cancer metastasis.


Assuntos
Aquaporina 1/genética , Aquaporina 1/metabolismo , Furaldeído/análogos & derivados , Furaldeído/farmacologia , Neoplasias/metabolismo , Animais , Aquaporina 1/química , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Regulação para Baixo , Feminino , Furaldeído/química , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HT29 , Humanos , Simulação de Acoplamento Molecular , Invasividade Neoplásica , Neoplasias/tratamento farmacológico , Neoplasias/genética , Xenopus laevis
2.
Mol Pharmacol ; 95(5): 573-583, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30858164

RESUMO

This is the first work to use a newly designed Li+-selective photoswitchable probe Sabrina Heng Lithium (SHL) in living colon cancer cells to noninvasively monitor cation channel activity in real time by the appearance of lithium hot spots detected by confocal microscopy. Punctate Li+ hot spots are clustered in the lamellipodial leading edges of HT29 human colon cancer cells and are colocalized with aquaporin-1 (AQP1) channels. AQP1 is a dual water and cyclic-nucleotide-gated cation channel located in lamellipodia and is essential for rapid cell migration in a subset of aggressive cancers. Both the Li+ hot spots and cell migration are blocked in HT29 cells by the AQP1 ion channel antagonist AqB011. In contrast, Li+ hot spots are not evident in a poorly migrating colon cancer cell line, SW620, which lacks comparable membrane expression of AQP1. Knockdown of AQP1 by RNA interference in HT29 cells significantly impairs Li+ hot spot activity. The SHL probe loaded in living cells shows signature chemical properties of ionic selectivity and reversibility. Dynamic properties of the Li+ hot spots, turning on and off, are confirmed by time-lapse imaging. SHL is a powerful tool for evaluating cation channel function in living cells in real time, with particular promise for studies of motile cells or interlinked networks not easily analyzed by electrophysiological methods. The ability to reset SHL by photoswitching allows monitoring of dynamic signals over time. Future applications of the Li+ probe could include high-throughput optical screening for discovering new classes of channels, or finding new pharmacological modulators for nonselective cation channels.


Assuntos
Movimento Celular/fisiologia , Neoplasias do Colo/metabolismo , Canais Iônicos/metabolismo , Lítio/administração & dosagem , Animais , Aquaporina 1/metabolismo , Linhagem Celular Tumoral , GMP Cíclico/metabolismo , Células HT29 , Humanos , Ativação do Canal Iônico/fisiologia , Oócitos/metabolismo , Oócitos/fisiologia , Transdução de Sinais/fisiologia , Xenopus laevis/metabolismo , Xenopus laevis/fisiologia
3.
Clin Exp Pharmacol Physiol ; 45(4): 401-409, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29193257

RESUMO

Aquaporin (AQP) channels in the major intrinsic protein (MIP) family are known to facilitate transmembrane water fluxes in prokaryotes and eukaryotes. Some classes of AQPs also conduct ions, glycerol, urea, CO2 , nitric oxide, and other small solutes. Ion channel activity has been demonstrated for mammalian AQPs 0, 1, 6, Drosophila Big Brain (BIB), soybean nodulin 26, and rockcress AtPIP2;1. More classes are likely to be discovered. Newly identified blockers are providing essential tools for establishing physiological roles of some of the AQP dual water and ion channels. For example, the arylsulfonamide AqB011 which selectively blocks the central ion pore of mammalian AQP1 has been shown to impair migration of HT29 colon cancer cells. Traditional herbal medicines are sources of selective AQP1 inhibitors that also slow cancer cell migration. The finding that plant AtPIP2;1 expressed in root epidermal cells mediates an ion conductance regulated by calcium and protons provided insight into molecular mechanisms of environmental stress responses. Expression of lens MIP (AQP0) is essential for maintaining the structure, integrity and transparency of the lens, and Drosophila BIB contributes to neurogenic signalling pathways to control the developmental fate of fly neuroblast cells; however, the ion channel roles remain to be defined for MIP and BIB. A broader portfolio of pharmacological agents is needed to investigate diverse AQP ion channel functions in situ. Understanding the dual water and ion channel roles of AQPs could inform the development of novel agents for rational interventions in diverse challenges from agriculture to human health.


Assuntos
Aquaporinas/química , Aquaporinas/metabolismo , Sequência de Aminoácidos , Animais , Humanos , Especificidade da Espécie
4.
Int J Mol Sci ; 18(11)2017 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-29099773

RESUMO

Aquaporins (AQPs) are known to facilitate water and solute fluxes across barrier membranes. An increasing number of AQPs are being found to serve as ion channels. Ion and water permeability of selected plant and animal AQPs (plant Arabidopsis thaliana AtPIP2;1, AtPIP2;2, AtPIP2;7, human Homo sapiens HsAQP1, rat Rattus norvegicus RnAQP4, RnAQP5, and fly Drosophilamelanogaster DmBIB) were expressed in Xenopus oocytes and examined in chelator-buffered salines to evaluate the effects of divalent cations (Ca2+, Mg2+, Ba2+ and Cd2+) on ionic conductances. AtPIP2;1, AtPIP2;2, HsAQP1 and DmBIB expressing oocytes had ionic conductances, and showed differential sensitivity to block by external Ca2+. The order of potency of inhibition by Ca2+ was AtPIP2;2 > AtPIP2;1 > DmBIB > HsAQP1. Blockage of the AQP cation channels by Ba2+ and Cd2+ caused voltage-sensitive outward rectification. The channels with the highest sensitivity to Ca2+ (AtPIP2;1 and AtPIP2;2) showed a distinctive relief of the Ca2+ block by co-application of excess Ba2+, suggesting that divalent ions act at the same site. Recognizing the regulatory role of divalent cations may enable the discovery of other classes of AQP ion channels, and facilitate the development of tools for modulating AQP ion channels. Modulators of AQPs have potential value for diverse applications including improving salinity tolerance in plants, controlling vector-borne diseases, and intervening in serious clinical conditions involving AQPs, such as cancer metastasis, cardiovascular or renal dysfunction.


Assuntos
Aquaporinas/metabolismo , Cátions Bivalentes/metabolismo , Animais , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Bário/metabolismo , Cádmio/metabolismo , Cálcio/metabolismo , Drosophila , Humanos , Transporte de Íons , Magnésio/metabolismo , Xenopus
5.
J Cancer Res Clin Oncol ; 149(7): 3009-3021, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-35841426

RESUMO

PURPOSE: Toll-like receptor 4 (TLR4) is increasingly recognized for its ability to govern the etiology and prognostic outcomes of colorectal cancer (CRC) due to its profound immunomodulatory capacity. Despite widespread interest in TLR4 and CRC, no clear analysis of current literature and data exists. Therefore, translational advances have failed to move beyond conceptual ideas and suggestions. METHODS: We aimed to determine the relationship between TLR4 and CRC through a systematic review and analysis of published literature and datasets. Data were extracted from nine studies that reported survival, CRC staging and tumor progression data in relation to TLR4 expression. Primary and metastatic tumor samples with associated clinical data were identified through the Cancer Genome Atlas (TCGA) database. RESULTS: Systematic review identified heterogeneous relationships between TLR4 and CRC traits, with no clear theme evident across studies. A total of 448 datasets were identified through the TCGA database. Analysis of TCGA datasets revealed TLR4 mRNA expression is decreased in advanced CRC stages (P < 0.05 for normal vs Stage II, Stage III and Stage IV). Stage-dependent impact of TLR4 expression on survival outcomes were also found, with high TLR4 expression associated with poorer prognosis (stage I vs III (HR = 4.2, P = 0.008) and stage I vs IV (HR = 11.3, P < 0.001)). CONCLUSION: While TLR4 mRNA expression aligned with CRC staging, it appeared to heterogeneously regulate survival outcomes depending on the stage of disease. This underscores the complex relationship between TLR4 and CRC, with unique impacts dependent on disease stage.


Assuntos
Neoplasias Colorretais , Receptor 4 Toll-Like , Humanos , Receptor 4 Toll-Like/genética , Receptor 4 Toll-Like/metabolismo , Microambiente Tumoral/genética , Prognóstico , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Estadiamento de Neoplasias , RNA Mensageiro , Biomarcadores Tumorais/metabolismo
6.
Biophys Rev ; 14(1): 181-198, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35340612

RESUMO

Aquaporins (AQPs) are multifunctional transmembrane channel proteins permeable to water and an expanding array of solutes. AQP-mediated ion channel activity was first observed when purified AQP0 from bovine lens was incorporated into lipid bilayers. Electrophysiological properties of ion-conducting AQPs since discovered in plants, invertebrates, and mammals have been assessed using native, reconstituted, and heterologously expressed channels. Accumulating evidence is defining amino acid residues that govern differential solute permeability through intrasubunit and central pores of AQP tetramers. Rings of charged and hydrophobic residues around pores influence AQP selectivity, and are candidates for further work to define motifs that distinguish ion conduction capability, versus strict water and glycerol permeability. Similarities between AQP ion channels thus far include large single channel conductances and long open times, but differences in ionic selectivity, permeability to divalent cations, and mechanisms of gating (e.g., by voltage, pH, and cyclic nucleotides) are unique to subtypes. Effects of lipid environments in modulating parameters such as single channel amplitude could explain in part the variations in AQP ion channel properties observed across preparations. Physiological roles of the ion-conducting AQP classes span diverse processes including regulation of cell motility, organellar pH, neural development, signaling, and nutrient acquisition. Advances in computational methods can generate testable predictions of AQP structure-function relationships, which combined with innovative high-throughput assays could revolutionize the field in defining essential properties of ion-conducting AQPs, discovering new AQP ion channels, and understanding the effects of AQP interactions with proteins, signaling cascades, and membrane lipids.

7.
EBioMedicine ; 82: 104143, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35810563

RESUMO

BACKGROUND: The prognostic value of tumor-infiltrating lymphocytes (TILs) assessed by machine learning algorithms in melanoma patients has been previously demonstrated but has not been widely adopted in the clinic. We evaluated the prognostic value of objective automated electronic TILs (eTILs) quantification to define a subset of melanoma patients with a low risk of relapse after surgical treatment. METHODS: We analyzed data for 785 patients from 5 independent cohorts from multiple institutions to validate our previous finding that automated TIL score is prognostic in clinically-localized primary melanoma patients. Using serial tissue sections of the Yale TMA-76 melanoma cohort, both immunofluorescence and Hematoxylin-and-Eosin (H&E) staining were performed to understand the molecular characteristics of each TIL phenotype and their associations with survival outcomes. FINDINGS: Five previously-described TIL variables were each significantly associated with overall survival (p<0.0001). Assessing the receiver operating characteristic (ROC) curves by comparing the clinical impact of two models suggests that etTILs (electronic total TILs) (AUC: 0.793, specificity: 0.627, sensitivity: 0.938) outperformed eTILs (AUC: 0.77, specificity: 0.51, sensitivity: 0.938). We also found that the specific molecular subtype of cells representing TILs includes predominantly cells that are CD3+ and CD8+ or CD4+ T cells. INTERPRETATION: eTIL% and etTILs scores are robust prognostic markers in patients with primary melanoma and may identify a subgroup of stage II patients at high risk of recurrence who may benefit from adjuvant therapy. We also show the molecular correlates behind these scores. Our data support the need for prospective testing of this algorithm in a clinical trial. FUNDING: This work was also supported by a sponsored research agreements from Navigate Biopharma and NextCure and by grants from the NIH including the Yale SPORE in in Skin Cancer, P50 CA121974, the Yale SPORE in Lung Cancer, P50 CA196530, NYU SPORE in Skin Cancer P50CA225450 and the Yale Cancer Center Support Grant, P30CA016359.


Assuntos
Melanoma , Neoplasias Cutâneas , Algoritmos , Humanos , Linfócitos do Interstício Tumoral/patologia , Aprendizado de Máquina , Melanoma/patologia , Recidiva Local de Neoplasia/patologia , Prognóstico , Estudos Prospectivos , Neoplasias Cutâneas/diagnóstico , Neoplasias Cutâneas/patologia
8.
Front Pharmacol ; 12: 794791, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35111062

RESUMO

In sickle cell disease (SCD), the pathological shift of red blood cells (RBCs) into distorted morphologies under hypoxic conditions follows activation of a cationic leak current (Psickle) and cell dehydration. Prior work showed sickling was reduced by 5-hydroxylmethyl-2-furfural (5-HMF), which stabilized mutant hemoglobin and also blocked the Psickle current in RBCs, though the molecular basis of this 5-HMF-sensitive cation current remained a mystery. Work here is the first to test the hypothesis that Aquaporin-1 (AQP1) cation channels contribute to the monovalent component of Psickle. Human AQP1 channels expressed in Xenopus oocytes were evaluated for sensitivity to 5-HMF and four derivatives known to have differential efficacies in preventing RBC sickling. Ion conductances were measured by two-electrode voltage clamp, and osmotic water permeability by optical swelling assays. Compounds tested were: 5-HMF; 5-PMFC (5-(phenoxymethyl)furan-2-carbaldehyde); 5-CMFC (5-(4-chlorophenoxymethyl)furan-2-carbaldehyde); 5-NMFC (5-(2-nitrophenoxymethyl)-furan-2-carbaldehyde); and VZHE006 (tert-butyl (5-formylfuran-2-yl)methyl carbonate). The most effective anti-sickling agent, 5-PMFC, was the most potent inhibitor of the AQP1 ion conductance (98% block at 100 µM). The order of sensitivity of the AQP1 conductance to inhibition was 5-PMFC > VZHE006 > 5-CMFC ≥ 5-NMFC, which corresponded with effectiveness in protecting RBCs from sickling. None of the compounds altered AQP1 water channel activity. Combined application of a selective AQP1 ion channel blocker AqB011 (80 µM) with a selective hemoglobin modifying agent 5-NMFC (2.5 mM) increased anti-sickling effectiveness in red blood cells from human SCD patients. Another non-selective cation channel known to be expressed in RBCs, Piezo1, was unaffected by 2 mM 5-HMF. Results suggest that inhibition of AQP1 ion channels and capacity to modify hemoglobin are combined features of the most effective anti-sickling agents. Future therapeutics aimed at both targets could hold promise for improved treatments for SCD.

9.
Sci Rep ; 9(1): 12635, 2019 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-31477744

RESUMO

Aquaporin-1 (AQP1) has been proposed as a dual water and cation channel that when upregulated in cancers enhances cell migration rates; however, the mechanism remains unknown. Previous work identified AqB011 as an inhibitor of the gated human AQP1 cation conductance, and bacopaside II as a blocker of AQP1 water pores. In two colorectal adenocarcinoma cell lines, high levels of AQP1 transcript were confirmed in HT29, and low levels in SW480 cells, by quantitative PCR (polymerase chain reaction). Comparable differences in membrane AQP1 protein levels were demonstrated by immunofluorescence imaging. Migration rates were quantified using circular wound closure assays and live-cell tracking. AqB011 and bacopaside II, applied in combination, produced greater inhibitory effects on cell migration than did either agent alone. The high efficacy of AqB011 alone and in combination with bacopaside II in slowing HT29 cell motility correlated with abundant membrane localization of AQP1 protein. In SW480, neither agent alone was effective in blocking cell motility; however, combined application did cause inhibition of motility, consistent with low levels of membrane AQP1 expression. Bacopaside alone or combined with AqB011 also significantly impaired lamellipodial formation in both cell lines. Knockdown of AQP1 with siRNA (confirmed by quantitative PCR) reduced the effectiveness of the combined inhibitors, confirming AQP1 as a target of action. Invasiveness measured using transwell filters layered with extracellular matrix in both cell lines was inhibited by AqB011, with a greater potency in HT29 than SW480. A side effect of bacopaside II at high doses was a potentiation of invasiveness, that was reversed by AqB011. Results here are the first to demonstrate that combined block of the AQP1 ion channel and water pores is more potent in impairing motility across diverse classes of colon cancer cells than single agents alone.


Assuntos
Aquaporina 1/antagonistas & inibidores , Movimento Celular/efeitos dos fármacos , Neoplasias do Colo/patologia , Saponinas/farmacologia , Triterpenos/farmacologia , Aquaporina 1/genética , Aquaporina 1/metabolismo , Linhagem Celular Tumoral , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Neoplasias do Colo/genética , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Humanos , Invasividade Neoplásica , Pseudópodes/efeitos dos fármacos , Pseudópodes/metabolismo , RNA Interferente Pequeno/metabolismo , Cicatrização/efeitos dos fármacos
10.
Front Oncol ; 9: 314, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31106149

RESUMO

Traditional Chinese Medicines are promising sources of new agents for controlling cancer metastasis. Compound Kushen Injection (CKI), prepared from medicinal plants Sophora flavescens and Heterosmilax chinensis, disrupts cell cycle and induces apoptosis in breast cancer; however, effects on migration and invasion remained unknown. CKI, fractionated mixtures, and isolated components were tested in migration assays with colon (HT-29, SW-480, DLD-1), brain (U87-MG, U251-MG), and breast (MDA-MB-231) cancer cell lines. Human embryonic kidney (HEK-293) and human foreskin fibroblast (HFF) served as non-cancerous controls. Wound closure, transwell invasion, and live cell imaging showed CKI reduced motility in all eight lines. Fractionation and reconstitution of CKI demonstrated combinations of compounds were required for activity. Live cell imaging confirmed CKI strongly reduced migration of HT-29 and MDA-MB-231 cells, moderately slowed brain cancer cells, and had a small effect on HEK-293. CKI uniformly blocked invasiveness through extracellular matrix. Apoptosis was increased by CKI in breast cancer but not in non-cancerous lines. Cell viability was unaffected by CKI in all cell lines. Transcriptomic analyses of MDA-MB-231indicated down-regulation of actin cytoskeletal and focal adhesion genes with CKI treatment, consistent with observed impairment of cell migration. The pharmacological complexity of CKI is important for effective blockade of cancer migration and invasion.

11.
Plant Physiol Biochem ; 126: 22-31, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29494985

RESUMO

Drought and salinity are two main abiotic stressors that can disrupt plant growth and survival. Various biotechnological approaches have been used to alleviate the problem of drought stress by improving water stress resistance in forestry and agriculture. The drought sensitive 1 (DRS1) gene acts as a regulator of drought stress, identified in human, yeast and some model plants, such as Arabidopsis thaliana, but there have been no reports of DRS1 transformation in poplar plants to date. In this study, we transformed the DRS1 gene from Populus trichocarpa into Populus deltoides × Populus euramericana 'Nanlin895' using Agrobacterium tumefaciens-mediated transformation. We confirmed that the DRS1 gene was transformed into 'Nanlin895' poplar genomes using reverse transcription polymerase chain reaction (PCR), multiplex PCR, real-time PCR, and sodium dodecyl sulfate-polyacrylamide gel electrophoresis. All transformed and wild-type (WT) plants were then transferred into a greenhouse for complementary experiments. We analyzed the physiological and biochemical responses of transgenic plants under drought and salt stresses in the greenhouse, and the results were compared with control WT plants. Responses to abiotic stress were greater in transgenic plants compared with WT. Based on our results, introduction of the DRS1 gene into poplar 'Nanlin895' plants significantly enhanced the resistance of those plants to water deficit and high salinity, allowing higher growth rates of roots and shoots in those plants. Additionally, the clawed root rate increased in transformed poplars grown in culture media or in soil, and improved survival under drought and salt stress conditions.


Assuntos
Proteínas de Plantas , Plantas Geneticamente Modificadas , Populus , Tolerância ao Sal/genética , Estresse Fisiológico/genética , Proteínas de Plantas/biossíntese , Proteínas de Plantas/genética , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Populus/genética , Populus/crescimento & desenvolvimento
12.
Front Chem ; 6: 142, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29755973

RESUMO

Aquaporins are integral proteins that facilitate the transmembrane transport of water and small solutes. In addition to enabling water flux, mammalian Aquaporin-1 (AQP1) channels activated by cyclic GMP can carry non-selective monovalent cation currents, selectively blocked by arylsulfonamide compounds AqB007 (IC50 170 µM) and AqB011 (IC50 14 µM). In silico models suggested that ligand docking might involve the cytoplasmic loop D (between AQP1 transmembrane domains 4 and 5), but the predicted site of interaction remained to be tested. Work here shows that mutagenesis of two conserved arginine residues in loop D slowed the activation of the AQP1 ion conductance and impaired the sensitivity of the channel to block by AqB011. Substitution of residues in loop D with proline showed effects on ion conductance amplitude that varied with position, suggesting that the structural conformation of loop D is important for AQP1 channel gating. Human AQP1 wild type, AQP1 mutant channels with alanines substituted for two arginines (R159A+R160A), and mutants with proline substituted for single residues threonine (T157P), aspartate (D158P), arginine (R159P, R160P), or glycine (G165P) were expressed in Xenopus laevis oocytes. Conductance responses were analyzed by two-electrode voltage clamp. Optical osmotic swelling assays and confocal microscopy were used to confirm mutant and wild type AQP1-expressing oocytes were expressed in the plasma membrane. After application of membrane-permeable cGMP, R159A+R160A channels had a significantly slower rate of activation as compared with wild type, consistent with impaired gating. AQP1 R159A+R160A channels showed no significant block by AqB011 at 50 µM, in contrast to the wild type channel which was blocked effectively. T157P, D158P, and R160P mutations had impaired activation compared to wild type; R159P showed no significant effect; and G165P appeared to augment the conductance amplitude. These findings provide evidence for the role of the loop D as a gating domain for AQP1 ion channels, and identify the likely site of interaction of AqB011 in the proximal loop D sequence.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA