Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Biochim Biophys Acta ; 1819(2): 104-19, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22033015

RESUMO

Ten years after the first overview of a complete plant Hsf family was presented for Arabidopsis thaliana by Nover et al. [1], we compiled data for 252 Hsfs from nine plant species (five eudicots and four monocots) with complete or almost complete genome sequences. The new data set provides interesting insights into phylogenetic relationships within the Hsf family in plants and allows the refinement of their classification into distinct groups. Numerous publications over the last decade document the diversification and functional interaction of Hsfs as well as their integration into the complex stress signaling and response networks of plants. This article is part of a Special Issue entitled: Plant gene regulation in response to abiotic stress.


Assuntos
Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Evolução Molecular , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/metabolismo , Família Multigênica , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Plantas/genética , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Proteínas de Ligação a DNA/genética , Fatores de Transcrição de Choque Térmico , Proteínas de Choque Térmico/genética , Filogenia , Proteínas de Plantas/genética , Plantas/química , Plantas/classificação , Plantas/metabolismo , Estrutura Terciária de Proteína , Fatores de Transcrição/genética
2.
J Biol Chem ; 284(31): 20848-57, 2009 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-19491106

RESUMO

In plants, a family of more than 20 heat stress transcription factors (Hsf) controls the expression of heat stress (hs) genes. There is increasing evidence for the functional diversification between individual members of the Hsf family fulfilling distinct roles in response to various environmental stress conditions and developmental signals. In response to hs, accumulation of both heat stress proteins (Hsp) and Hsfs is induced. In tomato, the physical interaction between the constitutively expressed HsfA1 and the hs-inducible HsfA2 results in synergistic transcriptional activation (superactivation) of hs gene expression. Here, we show that the interaction is strikingly specific and not observed with other class A Hsfs. Hetero-oligomerization of the two-component Hsfs is preferred to homo-oligomerization, and each Hsf in the HsfA1/HsfA2 hetero-oligomeric complex has its characteristic contribution to its function as superactivator. Distinct regions of the oligomerization domain are responsible for specific homo- and hetero-oligomeric interactions leading to the formation of hexameric complexes. The results are summarized in a model of assembly and function of HsfA1/A2 superactivator complexes in hs gene regulation.


Assuntos
Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/metabolismo , Resposta ao Choque Térmico/genética , Complexos Multiproteicos/metabolismo , Proteínas de Plantas/química , Proteínas de Plantas/metabolismo , Solanum lycopersicum/genética , Estresse Fisiológico/genética , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Cromatografia em Gel , Reagentes de Ligações Cruzadas/metabolismo , Proteínas de Ligação a DNA/genética , Fatores de Transcrição de Choque Térmico , Proteínas de Choque Térmico/genética , Modelos Biológicos , Dados de Sequência Molecular , Proteínas de Plantas/genética , Ligação Proteica , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Fatores de Transcrição/genética
3.
Plant J ; 56(4): 517-30, 2008 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-18643965

RESUMO

Similar to the situation in mammalian cells and yeast, messenger ribonucleo protein (mRNP) homeostasis in plant cells depends on rapid transitions between three functional states, i.e. translated mRNPs in polysomes, stored mRNPs and mRNPs under degradation. Studies in mammalian cells showed that whenever the dynamic exchange of the components between these states is disrupted, stalled mRNPs accumulate in cytoplasmic aggregates, such as stress granules (SGs) or processing bodies (PBs). We identified PBs and SGs in plant cells by detection of DCP1, DCP2 and XRN4, as marker proteins for the 5'-->3' mRNA degradation pathway, and eIF4E, as well as the RNA binding proteins RBP47 and UBP1, as marker proteins for stored mRNPs in SGs. Cycloheximide-inhibited translation, stress treatments and mutants defective in mRNP homeostasis were used to study the dynamic transitions of mRNPs between SGs and PBs. SGs and PBs can be clearly discriminated from the previously described heat stress granules (HSGs), which evidently do not contain mRNPs. Thus, the role of HSGs as putative mRNP storage sites must be revised.


Assuntos
Arabidopsis/metabolismo , Grânulos Citoplasmáticos/metabolismo , Polirribossomos/metabolismo , Ribonucleoproteínas/metabolismo , Proteínas de Arabidopsis/metabolismo , Células Cultivadas , Cicloeximida/farmacologia , Endorribonucleases/metabolismo , Fator de Iniciação 4E em Eucariotos/metabolismo , Exorribonucleases/metabolismo , Proteínas de Plantas/metabolismo , Biossíntese de Proteínas/efeitos dos fármacos , Protoplastos/metabolismo , Estabilidade de RNA , Proteínas de Ligação a RNA/metabolismo , Estresse Fisiológico
4.
Trends Plant Sci ; 12(10): 452-7, 2007 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17826296

RESUMO

Compared with other eukaryotes with one to three heat stress transcription factors (Hsf), the plant Hsf family shows a striking multiplicity, with more than 20 members. Despite many conserved features, members of the Hsf family show a strong diversification of expression pattern and function within the family. Research on Arabidopsis Hsfs opened a new era with genome-wide transcriptome profiling in combination with the availability of knockout lines. The output from these analyses provides increasing evidence that individual Hsfs have unique functions as part of different signal transduction pathways operating in response to environmental stress and during development.


Assuntos
Arabidopsis/genética , Regulação da Expressão Gênica de Plantas , Resposta ao Choque Térmico/fisiologia , Temperatura Alta , Solanum lycopersicum/genética , Fatores de Transcrição/metabolismo , Arabidopsis/metabolismo , Resposta ao Choque Térmico/genética , Solanum lycopersicum/metabolismo
5.
J Biosci ; 29(4): 471-87, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15625403

RESUMO

Compared to the overall multiplicity of more than 20 plant Hsfs, detailed analyses are mainly restricted to tomato and Arabidopsis and to three important representatives of the family (Hsfs A1, A2 and B1). The three Hsfs represent examples of striking functional diversification specialized for the three phases of the heat stress (hs) response (triggering, maintenance and recovery). This is best illustrated for the tomato Hsf system: (i) HsfA1a is the master regulator responsible for hs-induced gene expression including synthesis of HsfA2 and HsfB1. It is indispensible for the development of thermotolerance. (ii) Although functionally equivalent to HsfA1a, HsfA2 is exclusively found after hs induction and represents the dominant Hsf, the "working horse" of the hs response in plants subjected to repeated cycles of hs and recovery in a hot summer period. Tomato HsfA2 is tightly integrated into a network of interacting proteins (HsfA1a, Hsp17-CII, Hsp17-CI) influencing its activity and intracellular distribution. (iii) Because of structural peculiarities, HsfB1 acts as coregulator enhancing the activity of HsfA1a and/or HsfA2. But in addition, it cooperates with yet to be identified other transcription factors in maintaining and/or restoring housekeeping gene expression.


Assuntos
Arabidopsis/metabolismo , Proteínas de Ligação a DNA/metabolismo , Chaperonas Moleculares/metabolismo , Solanum lycopersicum/metabolismo , Fatores de Transcrição/metabolismo , Sequência de Aminoácidos , Arabidopsis/genética , Proteínas de Arabidopsis , Southern Blotting , Proteínas de Ligação a DNA/genética , Fatores de Transcrição de Choque Térmico , Proteínas de Choque Térmico , Calefação , Solanum lycopersicum/genética , Dados de Sequência Molecular , Proteínas de Plantas , Plantas Geneticamente Modificadas , Fatores de Transcrição/genética
7.
J Biol Chem ; 282(6): 3605-13, 2007 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-17150959

RESUMO

Unlike other eukaryotes, plants possess a complex family of heat stress transcription factors (Hsfs) with usually more than 20 members. Among them, Hsfs A4 and A5 form a group distinguished from other Hsfs by structural features of their oligomerization domains and by a number of conserved signature sequences. We show that A4 Hsfs are potent activators of heat stress gene expression, whereas A5 Hsfs act as specific repressors of HsfA4 activity. The oligomerization domain of HsfA5 alone is necessary and sufficient to exert this effect. Due to the high specificity of the oligomerization domains, other class A Hsfs are not affected. Pull-down assay and yeast two-hybrid interaction tests demonstrate that the tendency to form HsfA4/A5 heterooligomers is stronger than the formation of homooligomers. The specificity of interaction between Hsfs A4 and A5 was confirmed by bimolecular fluorescence complementation experiments. The major role of the representatives of the HsfA4/A5 group, which are not involved in the conventional heat stress response, may reside in cell type-specific functions connected with the control of cell death triggered by pathogen infection and/or reactive oxygen species.


Assuntos
Proteínas de Ligação a DNA/antagonistas & inibidores , Proteínas de Ligação a DNA/fisiologia , Proteínas de Choque Térmico/antagonistas & inibidores , Proteínas de Choque Térmico/fisiologia , Proteínas de Plantas/antagonistas & inibidores , Proteínas de Plantas/fisiologia , Proteínas Repressoras/fisiologia , Solanum lycopersicum/fisiologia , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/fisiologia , Proteínas de Ligação a DNA/metabolismo , Fatores de Transcrição de Choque Térmico , Proteínas de Choque Térmico/metabolismo , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Ativação Transcricional/fisiologia
8.
Planta ; 224(1): 42-52, 2006 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-16331466

RESUMO

The heat shock response (HSR) is a conserved mechanism by which transcripts of heat shock protein (hsp) genes accumulate following mobilization of heat shock transcription factors (HSFs) in response to thermal stress. Studies in animals identified the heat shock factor-binding protein1 (HSBP1) that interacts with heat shock transcription factor1 (HSF1) during heat shock attenuation; overexpression analyses revealed that the coiled-coil protein HSBP1 functions as a negative regulator of the HSR. Zea mays contains two HSBP paralogs, EMP2 and HSBP2, which exhibit differential accumulation during the HSR and plant development. Embryo-lethal recessive emp2 mutations revealed that EMP2 is required for the down-regulation of hsp transcription during embryogenesis, whereas accumulation of HSBP2 is induced in seedlings following heat shock. Notwithstanding, no interaction has yet been demonstrated between a plant HSBP and a plant HSF. In this report 22 maize HSF isoforms are identified comprising three structural classes: HSF-A, HSF-B and HSF-C. Phylogenetic analysis of Arabidopsis, maize and rice HSFs reveals that at least nine ancestral HSF isoforms were present prior to the separation of monocot and eudicots, followed by differential amplification of HSF members in these lineages. Yeast two-hybrid analyses show that EMP2 and HSBP2 interact non-redundantly with specific HSF-A isoforms. Site-specific mutagenesis of HSBP2 reveals that interactions between hydrophobic residues within the coiled coil are required for HSF::HSBP2 binding; domain swapping demonstrate that the isoform specificity of HSF::HSBP interaction is conferred by residues outside of the coiled coil. These data suggest that the non-redundant functions of the maize HSBPs may be explained, at least in part, by the specificity of HSBP::HSF interactions during plant development.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Choque Térmico/metabolismo , Proteínas de Plantas/metabolismo , Fatores de Transcrição/metabolismo , Zea mays/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Proteínas de Arabidopsis , Sítios de Ligação , Proteínas de Transporte/química , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Fatores de Transcrição de Choque Térmico , Proteínas de Choque Térmico/química , Proteínas de Choque Térmico/genética , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Filogenia , Proteínas de Plantas/química , Proteínas de Plantas/genética , Isoformas de Proteínas/química , Isoformas de Proteínas/metabolismo , Estrutura Terciária de Proteína , Alinhamento de Sequência , Fatores de Transcrição/química , Fatores de Transcrição/genética , Técnicas do Sistema de Duplo-Híbrido , Zea mays/genética
9.
Plant Cell ; 16(6): 1521-35, 2004 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-15131252

RESUMO

In contrast with the class A heat stress transcription factors (HSFs) of plants, a considerable number of HSFs assigned to classes B and C have no evident function as transcription activators on their own. However, in the following article, we provide evidence that tomato (Lycopersicon peruvianum) HsfB1 represents a novel type of coactivator cooperating with class A HSFs (e.g., with tomato HsfA1). Provided the appropriate promoter architecture, the two HSFs assemble into an enhanceosome-like complex, resulting in strong synergistic activation of reporter gene expression. Moreover, HsfB1 also cooperates in a similar manner with other activators, for example, with the ASF1/2 enhancer binding proteins of the 35S promoter of Cauliflower mosaic virus or with yet unidentified activators controlling housekeeping gene expression. By these effects, HsfB1 may help to maintain and/or restore expression of certain viral or housekeeping genes during ongoing heat stress. The coactivator function of HsfB1 depends on a histone-like motif in its C-terminal domain with an indispensable Lys residue in the center (GRGKMMK). This motif is required for recruitment of the plant CREB binding protein (CBP) ortholog HAC1. HsfA1, HsfB1, and HAC1/CBP form ternary complexes in vitro and in vivo with markedly enhanced efficiency in promoter recognition and transcription activation in plant and mammalian (COS7) cells. Using small interfering RNA-mediated knock down of HAC1 expression in Arabidopsis thaliana mesophyll protoplasts, the crucial role for the coactivator function of HsfB1 was confirmed.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Regulação da Expressão Gênica de Plantas , Histonas/química , Proteínas Nucleares/metabolismo , Solanum lycopersicum/genética , Solanum lycopersicum/metabolismo , Transativadores/metabolismo , Fatores de Transcrição/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Arabidopsis/citologia , Arabidopsis/genética , Arabidopsis/metabolismo , Proteínas de Arabidopsis , Células COS , Proteína de Ligação a CREB , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/genética , Sinergismo Farmacológico , Genes de Plantas/genética , Genes Reporter/genética , Fatores de Transcrição de Choque Térmico , Proteínas de Choque Térmico , Substâncias Macromoleculares , Dados de Sequência Molecular , Proteínas de Plantas/química , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Regiões Promotoras Genéticas/genética , Ligação Proteica , Protoplastos/citologia , Protoplastos/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/genética , Transcrição Gênica/genética
10.
Genes Dev ; 16(12): 1555-67, 2002 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-12080093

RESUMO

We generated transgenic tomato plants with altered expression of heat stress transcription factor HsfA1. Plants with 10-fold overexpression of HsfA1 (OE plants) were characterized by a single HsfA1 transgene cassette, whereas plants harboring a tandem inverted repeat of the cassette showed cosuppression (CS plants) by posttranscriptional silencing of the HsfA1 gene connected with formation of small interfering RNAs. Under normal growth conditions, major developmental parameters were similar for wild-type (WT), OE, and CS plants. However, CS plants and fruits were extremely sensitive to elevated temperatures, because heat stress-induced synthesis of chaperones and Hsfs was strongly reduced or lacking. Despite the complexity of the plant Hsf family with at least 17 members in tomato, HsfA1 has a unique function as master regulator for induced thermotolerance. Using transient reporter assays with mesophyll protoplasts from WT tomato, we demonstrated that plasmid-encoded HsfA1 and HsfA2 were well expressed. However, in CS protoplasts the cosuppression phenomenon was faithfully reproduced. Only transformation with HsfA2 expression plasmid led to normal expression of the transcription factor and reporter gene activation, whereas even high amounts of HsfA1 expression plasmids were silenced. Thermotolerance in CS protoplasts was restored by plasmid-borne HsfA2, resulting in expression of chaperones, thermoprotection of firefly luciferase, and assembly of heat stress granules.


Assuntos
Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Solanum lycopersicum/metabolismo , Fatores de Transcrição/química , Fatores de Transcrição/metabolismo , Northern Blotting , Southern Blotting , Inativação Gênica , Genes Reporter , Fatores de Transcrição de Choque Térmico , Proteínas de Choque Térmico , Temperatura Alta , Immunoblotting , Luciferases/metabolismo , Solanum lycopersicum/genética , Hibridização de Ácido Nucleico , Oligonucleotídeos Antissenso/química , Oligonucleotídeos Antissenso/farmacologia , Fenótipo , Proteínas de Plantas , Plantas Geneticamente Modificadas , Plasmídeos/metabolismo , Ligação Proteica , RNA/metabolismo , RNA Interferente Pequeno , RNA não Traduzido/metabolismo , Temperatura , Fatores de Tempo , Transcrição Gênica , Transgenes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA