Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
1.
Annu Rev Biochem ; 81: 637-59, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22463690

RESUMO

Members of the Rab or ARF/Sar branches of the Ras GTPase superfamily regulate almost every step of intracellular membrane traffic. A rapidly growing body of evidence indicates that these GTPases do not act as lone agents but are networked to one another through a variety of mechanisms to coordinate the individual events of one stage of transport and to link together the different stages of an entire transport pathway. These mechanisms include guanine nucleotide exchange factor (GEF) cascades, GTPase-activating protein (GAP) cascades, effectors that bind to multiple GTPases, and positive-feedback loops generated by exchange factor-effector interactions. Together these mechanisms can lead to an ordered series of transitions from one GTPase to the next. As each GTPase recruits a unique set of effectors, these transitions help to define changes in the functionality of the membrane compartments with which they are associated.


Assuntos
GTP Fosfo-Hidrolases/metabolismo , Fatores de Ribosilação do ADP/metabolismo , Animais , Endossomos/metabolismo , Complexo de Golgi/metabolismo , Humanos , Redes e Vias Metabólicas , Transporte Proteico , Proteínas rab de Ligação ao GTP/metabolismo
2.
Proc Natl Acad Sci U S A ; 121(24): e2321991121, 2024 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-38838012

RESUMO

The endoplasmic reticulum (ER) undergoes degradation by selective macroautophagy (ER-phagy) in response to starvation or the accumulation of misfolded proteins within its lumen. In yeast, actin assembly at sites of contact between the cortical ER (cER) and endocytic pits acts to displace elements of the ER from their association with the plasma membrane (PM) so they can interact with the autophagosome assembly machinery near the vacuole. A collection of proteins tether the cER to the PM. Of these, Scs2/22 and Ist2 are required for cER-phagy, most likely through their roles in lipid transport, while deletion of the tricalbins, TCB1/2/3, bypasses those requirements. An artificial ER-PM tether blocks cER-phagy in both the wild type (WT) and a strain lacking endogenous tethers, supporting the importance of cER displacement from the PM. Scs2 and Ist2 can be cross-linked to the selective cER-phagy receptor, Atg40. The COPII cargo adaptor subunit, Lst1, associates with Atg40 and is required for cER-phagy. This requirement is also bypassed by deletion of the ER-PM tethers, suggesting a role for Lst1 prior to the displacement of the cER from the PM during cER-phagy. Although pexophagy and mitophagy also require actin assembly, deletion of ER-PM tethers does not bypass those requirements. We propose that within the context of rapamycin-induced cER-phagy, Scs2/22, Ist2, and Lst1 promote the local displacement of an element of the cER from the cortex, while Tcb1/2/3 act in opposition, anchoring the cER to the plasma membrane.


Assuntos
Autofagia , Membrana Celular , Retículo Endoplasmático , Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Retículo Endoplasmático/metabolismo , Autofagia/fisiologia , Membrana Celular/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética
3.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35101986

RESUMO

Fragments of the endoplasmic reticulum (ER) are selectively delivered to the lysosome (mammals) or vacuole (yeast) in response to starvation or the accumulation of misfolded proteins through an autophagic process known as ER-phagy. A screen of the Saccharomyces cerevisiae deletion library identified end3Δ as a candidate knockout strain that is defective in ER-phagy during starvation conditions, but not bulk autophagy. We find that loss of End3 and its stable binding partner Pan1, or inhibition of the Arp2/3 complex that is coupled by the End3-Pan1 complex to endocytic pits, blocks the association of the cortical ER autophagy receptor, Atg40, with the autophagosomal assembly scaffold protein Atg11. The membrane contact site module linking the rim of cortical ER sheets and endocytic pits, consisting of Scs2 or Scs22, Osh2 or Osh3, and Myo3 or Myo5, is also needed for ER-phagy. Both Atg40 and Scs2 are concentrated at the edges of ER sheets and can be cross-linked to each other. Our results are consistent with a model in which actin assembly at sites of contact between the cortical ER and endocytic pits contributes to ER sequestration into autophagosomes.


Assuntos
Actinas/metabolismo , Autofagossomos/metabolismo , Autofagia , Retículo Endoplasmático/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Actinas/genética , Autofagossomos/genética , Retículo Endoplasmático/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
4.
Proc Natl Acad Sci U S A ; 117(31): 18530-18539, 2020 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-32690699

RESUMO

Endoplasmic reticulum (ER) macroautophagy (hereafter called ER-phagy) uses autophagy receptors to selectively degrade ER domains in response to starvation or the accumulation of aggregation-prone proteins. Autophagy receptors package the ER into autophagosomes by binding to the ubiquitin-like yeast protein Atg8 (LC3 in mammals), which is needed for autophagosome formation. In budding yeast, cortical and cytoplasmic ER-phagy requires the autophagy receptor Atg40. While different ER autophagy receptors have been identified, little is known about other components of the ER-phagy machinery. In an effort to identify these components, we screened the genome-wide library of viable yeast deletion mutants for defects in the degradation of cortical ER following treatment with rapamycin, a drug that mimics starvation. Among the mutants we identified was vps13Δ. While yeast has one gene that encodes the phospholipid transporter VPS13, humans have four vacuolar protein-sorting (VPS) protein 13 isoforms. Mutations in all four human isoforms have been linked to different neurological disorders, including Parkinson's disease. Our findings have shown that Vps13 acts after Atg40 engages the autophagy machinery. Vps13 resides at contact sites between the ER and several organelles, including late endosomes. In the absence of Vps13, the cortical ER marker Rtn1 accumulated at late endosomes, and a dramatic decrease in ER packaging into autophagosomes was observed. Together, these studies suggest a role for Vps13 in the sequestration of the ER into autophagosomes at late endosomes. These observations may have important implications for understanding Parkinson's and other neurological diseases.


Assuntos
Autofagossomos/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Autofagia , Linhagem Celular , Retículo Endoplasmático/genética , Endossomos/genética , Endossomos/metabolismo , Humanos , Saccharomyces cerevisiae/citologia , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
5.
Proc Natl Acad Sci U S A ; 115(27): E6237-E6244, 2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29915089

RESUMO

The endoplasmic reticulum (ER) forms a contiguous network of tubules and sheets that is predominantly associated with the cell cortex in yeast. Upon treatment with rapamycin, the ER undergoes degradation by selective autophagy. This process, termed ER-phagy, requires Atg40, a selective autophagy receptor that localizes to the cortical ER. Here we report that ER-phagy also requires Lnp1, an ER membrane protein that normally resides at the three-way junctions of the ER network, where it serves to stabilize the network as it is continually remodeled. Rapamycin treatment increases the expression of Atg40, driving ER domains marked by Atg40 puncta to associate with Atg11, a scaffold protein needed to form autophagosomes. Although Atg40 largely localizes to the cortical ER, the autophagy machinery resides in the cell interior. The localization of Atg40 to sites of autophagosome formation is blocked in an lnp1Δ mutant or upon treatment of wild-type cells with the actin-depolymerizing drug Latrunculin A. This prevents the association of Atg40 with Atg11 and the packaging of the ER into autophagosomes. We propose that Lnp1 is needed to stabilize the actin-dependent remodeling of the ER that is essential for ER-phagy.


Assuntos
Autofagossomos/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas Relacionadas à Autofagia/genética , Proteínas Relacionadas à Autofagia/metabolismo , Compostos Bicíclicos Heterocíclicos com Pontes/farmacologia , Retículo Endoplasmático/genética , Proteínas de Membrana/genética , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Tiazolidinas/farmacologia , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
6.
Proc Natl Acad Sci U S A ; 114(41): E8637-E8645, 2017 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-28973856

RESUMO

Ypt1 and Sec4 are essential Rab GTPases that control the early and late stages of the yeast secretory pathway, respectively. A chimera consisting of Ypt1 with the switch I domain of Sec4, Ypt1-SW1Sec4, is efficiently activated in vitro by the Sec4 exchange factor, Sec2. This should lead to its ectopic activation in vivo and thereby disrupt membrane traffic. Nonetheless early studies found that yeast expressing Ypt1-SW1Sec4 as the sole copy of YPT1 exhibit no growth defect. To resolve this conundrum, we have analyzed yeast expressing various levels of Ypt1-SW1Sec4 We show that even normal expression of Ypt1-SW1Sec4 leads to kinetic transport defects at a late stage of the pathway, with secretory vesicles accumulating near exocytic sites. Higher levels are toxic. Toxicity is suppressed by truncation of Uso1, a vesicle tether required for endoplasmic reticulum-Golgi traffic. The globular head of Uso1 binds to Ypt1 and its coiled-coil tail binds to the Golgi-associated SNARE, Sed5. We propose that when Uso1 is inappropriately recruited to secretory vesicles by Ypt1-SW1Sec4, the extended coiled-coil tail blocks docking to the plasma membrane. This putative inhibitory function could serve to increase the fidelity of vesicle docking.


Assuntos
Membrana Celular/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Ligação Proteica , Saccharomyces cerevisiae/crescimento & desenvolvimento
7.
Physiol Rev ; 91(1): 119-49, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21248164

RESUMO

Intracellular membrane traffic defines a complex network of pathways that connects many of the membrane-bound organelles of eukaryotic cells. Although each pathway is governed by its own set of factors, they all contain Rab GTPases that serve as master regulators. In this review, we discuss how Rabs can regulate virtually all steps of membrane traffic from the formation of the transport vesicle at the donor membrane to its fusion at the target membrane. Some of the many regulatory functions performed by Rabs include interacting with diverse effector proteins that select cargo, promoting vesicle movement, and verifying the correct site of fusion. We describe cascade mechanisms that may define directionality in traffic and ensure that different Rabs do not overlap in the pathways that they regulate. Throughout this review we highlight how Rab dysfunction leads to a variety of disease states ranging from infectious diseases to cancer.


Assuntos
Vesículas Transportadoras/fisiologia , Proteínas rab de Ligação ao GTP/metabolismo , Animais , Doenças Transmissíveis/metabolismo , Humanos , Membranas Intracelulares/fisiologia , Estrutura Molecular , Neoplasias/metabolismo , Doenças do Sistema Nervoso/metabolismo , Proteínas rab de Ligação ao GTP/química
8.
Proc Natl Acad Sci U S A ; 112(2): 418-23, 2015 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-25548161

RESUMO

The endoplasmic reticulum (ER) consists of a polygonal network of sheets and tubules interconnected by three-way junctions. This network undergoes continual remodeling through competing processes: the branching and fusion of tubules forms new three-way junctions and new polygons, and junction sliding and ring closure leads to polygon loss. However, little is known about the machinery required to generate and maintain junctions. We previously reported that yeast Lnp1 localizes to ER junctions, and that loss of Lnp1 leads to a collapsed, densely reticulated ER network. In mammalian cells, only approximately half the junctions contain Lnp1. Here we use live cell imaging to show that mammalian Lnp1 (mLnp1) affects ER junction mobility and hence network dynamics. Three-way junctions with mLnp1 are less mobile than junctions without mLnp1. Newly formed junctions that acquire mLnp1 remain stable within the ER network, whereas nascent junctions that fail to acquire mLnp1 undergo rapid ring closure. These findings imply that mLnp1 plays a key role in stabilizing nascent three-way ER junctions.


Assuntos
Retículo Endoplasmático/metabolismo , Proteínas de Homeodomínio/metabolismo , Animais , Células COS , Chlorocebus aethiops , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , Proteínas de Ligação ao GTP/genética , Proteínas de Ligação ao GTP/metabolismo , Proteínas de Homeodomínio/antagonistas & inibidores , Proteínas de Homeodomínio/genética , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteolipídeos/metabolismo , RNA Interferente Pequeno/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Análise de Célula Única
9.
Nature ; 477(7366): 587-91, 2011 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-21881562

RESUMO

The evolution of the amniotic egg was one of the great evolutionary innovations in the history of life, freeing vertebrates from an obligatory connection to water and thus permitting the conquest of terrestrial environments. Among amniotes, genome sequences are available for mammals and birds, but not for non-avian reptiles. Here we report the genome sequence of the North American green anole lizard, Anolis carolinensis. We find that A. carolinensis microchromosomes are highly syntenic with chicken microchromosomes, yet do not exhibit the high GC and low repeat content that are characteristic of avian microchromosomes. Also, A. carolinensis mobile elements are very young and diverse-more so than in any other sequenced amniote genome. The GC content of this lizard genome is also unusual in its homogeneity, unlike the regionally variable GC content found in mammals and birds. We describe and assign sequence to the previously unknown A. carolinensis X chromosome. Comparative gene analysis shows that amniote egg proteins have evolved significantly more rapidly than other proteins. An anole phylogeny resolves basal branches to illuminate the history of their repeated adaptive radiations.


Assuntos
Aves/genética , Evolução Molecular , Genoma/genética , Lagartos/genética , Mamíferos/genética , Animais , Galinhas/genética , Sequência Rica em GC/genética , Genômica , Humanos , Dados de Sequência Molecular , Filogenia , Sintenia/genética , Cromossomo X/genética
10.
Mol Microbiol ; 95(3): 472-90, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25425138

RESUMO

Vesicle traffic involves budding, transport, tethering and fusion of vesicles with acceptor membranes. GTP-bound small Rab GTPases interact with the membrane of vesicles, promoting their association with other factors before their subsequent fusion. Filamentous fungi contain at their hyphal apex the Spitzenkörper (Spk), a multivesicular structure to which vesicles concentrate before being redirected to specific cell sites. The regulatory mechanisms ensuring the directionality of the vesicles that travel to the Spk are still unknown. Hence, we analyzed YPT-1, the Neurospora crassa homologue of Saccharomyces cerevisiae Ypt1p (Rab1), which regulates different secretory pathway events. Laser scanning confocal microscopy revealed fluorescently tagged YPT-1 at the Spk and putative Golgi cisternae. Co-expression of YPT-1 and predicted post-Golgi Rab GTPases showed YPT-1 confined to the Spk microvesicular core, while SEC-4 (Rab8) and YPT-31 (Rab11) occupied the Spk macrovesicular peripheral layer, suggesting that trafficking and organization of macro and microvesicles at the Spk are regulated by distinct Rabs. Partial colocalization of YPT-1 with USO-1 (p115) and SEC-7 indicated the additional participation of YPT-1 at early and late Golgi trafficking steps.


Assuntos
Vesículas Citoplasmáticas/metabolismo , Proteínas Fúngicas/metabolismo , Complexo de Golgi/metabolismo , Neurospora crassa/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Hifas/metabolismo , Neurospora crassa/citologia , Transporte Proteico , Saccharomyces cerevisiae/metabolismo
11.
Proc Natl Acad Sci U S A ; 110(50): 19995-20002, 2013 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-24248333

RESUMO

Sec2p is a guanine nucleotide exchange factor that promotes exocytosis by activating the Rab GTPase Sec4p. Sec2p is highly phosphorylated, and we have explored the role of phosphorylation in the regulation of its function. We have identified three phosphosites and demonstrate that phosphorylation regulates the interaction of Sec2p with its binding partners Ypt32p, Sec15p, and phosphatidyl-inositol-4-phosphate. In its nonphosphorylated form, Sec2p binds preferentially to the upstream Rab, Ypt32p-GTP, thus forming a Rab guanine nucleotide exchange factor cascade that leads to the activation of the downstream Rab, Sec4p. The nonphosphorylated form of Sec2p also binds to the Golgi-associated phosphatidyl-inositol-4-phosphate, which works in concert with Ypt32p-GTP to recruit Sec2p to Golgi-derived secretory vesicles. In contrast, the phosphorylated form of Sec2p binds preferentially to Sec15p, a downstream effector of Sec4p and a component of the exocyst tethering complex, thus forming a positive-feedback loop that prepares the secretory vesicle for fusion with the plasma membrane. Our results suggest that the phosphorylation state of Sec2p can direct a switch in its regulatory binding partners that facilitates maturation of the secretory vesicle and helps to promote the directionality of vesicular transport.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/fisiologia , Vesículas Transportadoras/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Transporte Biológico/fisiologia , Eletroforese em Gel de Poliacrilamida , Fatores de Troca do Nucleotídeo Guanina/genética , Imunoprecipitação , Microscopia Eletrônica , Microscopia de Fluorescência , Mutagênese Sítio-Dirigida , Fosfatos de Fosfatidilinositol/metabolismo , Fosforilação , Ligação Proteica , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Transporte Vesicular/metabolismo
12.
Proc Natl Acad Sci U S A ; 107(32): 14176-81, 2010 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-20660722

RESUMO

The Golgi-associated retrograde protein (GARP) complex is a membrane-tethering complex that functions in traffic from endosomes to the trans-Golgi network. Here we present the structure of a C-terminal fragment of the Vps53 subunit, important for binding endosome-derived vesicles, at a resolution of 2.9 A. We show that the C terminus consists of two alpha-helical bundles arranged in tandem, and we identify a highly conserved surface patch, which may play a role in vesicle recognition. Mutations of the surface result in defects in membrane traffic. The fold of the Vps53 C terminus is strongly reminiscent of proteins that belong to three other tethering complexes--Dsl1, conserved oligomeric Golgi, and the exocyst--thought to share a common evolutionary origin. Thus, the structure of the Vps53 C terminus suggests that GARP belongs to this family of complexes.


Assuntos
Proteínas de Transporte/química , Complexos Multiproteicos/química , Fragmentos de Peptídeos/química , Proteínas de Saccharomyces cerevisiae/química , Rede trans-Golgi/metabolismo , Cristalografia por Raios X , Endossomos/metabolismo , Conformação Proteica , Subunidades Proteicas , Transporte Proteico
13.
Autophagy ; 19(1): 358-359, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35532158

RESUMO

A recent screen of the Saccharomyces cerevisiae deletion library implicated End3 in autophagy of the endoplasmic reticulum (ER). Together with Pan1, End3 coordinates endocytic site initiation with the localized assembly of branching actin filaments that promotes invagination of endocytic pits. Oxysterol binding proteins function as an inter-organelle bridge by interacting with VAP proteins on the cortical ER and type I myosins on the endocytic pit. These proteins not only promote localized actin assembly at contact sites, they are required for ER autophagy as well. We propose that localized actin polymerization can push the edge of an ER sheet from the cell cortex toward the site of autophagosome assembly near the vacuole.


Assuntos
Actinas , Proteínas de Saccharomyces cerevisiae , Actinas/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Autofagia , Saccharomyces cerevisiae/metabolismo , Retículo Endoplasmático/metabolismo
14.
Mol Biol Cell ; 34(5): ar38, 2023 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-36857153

RESUMO

Bidirectional vesicular traffic links compartments along the exocytic and endocytic pathways. Rab GTPases have been implicated in specifying the direction of vesicular transport. To explore this possibility, we sought to redirect an exocytic Rab, Sec4, onto endocytic vesicles by fusing the catalytic domain of the Sec4 GEF, Sec2, onto the CUE localization domain of Vps9, a GEF for the endocytic Rab Ypt51. The Sec2GEF-GFP-CUE construct localized to bright puncta predominantly near sites of polarized growth, and this localization was dependent on the ability of the CUE domain to bind to the ubiquitin moieties added to the cytoplasmic tails of proteins destined for endocytic internalization. Sec4 and Sec4 effectors were recruited to these puncta with various efficiencies. Cells expressing Sec2GEF-GFP-CUE grew surprisingly well and secreted protein at near-normal efficiency, implying that Golgi-derived secretory vesicles were delivered to polarized sites of cell growth despite the misdirection of Sec4 and its effectors. A low efficiency mechanism for localization of Sec2 to secretory vesicles that is independent of known cues might be responsible. In total, the results suggest that while Rabs may play a critical role in specifying the direction of vesicular transport, cells are remarkably tolerant of Rab misdirection.


Assuntos
Proteínas de Saccharomyces cerevisiae , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Vesículas Secretórias/metabolismo , Proteínas de Transporte Vesicular/metabolismo
15.
bioRxiv ; 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36798320

RESUMO

Bidirectional vesicular traffic links compartments along the exocytic and endocytic pathways. Rab GTPases have been implicated in specifying the direction of vesicular transport because anterograde vesicles are marked with a different Rab than retrograde vesicles. To explore this proposal, we sought to redirect an exocytic Rab, Sec4, onto endocytic vesicles by fusing the catalytic domain of the Sec4 GEF, Sec2, onto the CUE localization domain of Vps9, a GEF for the endocytic Rab, Ypt51. The Sec2GEF-GFP-CUE construct was found to localize to bright puncta predominantly near sites of polarized growth and this localization was strongly dependent upon the ability of the CUE domain to bind to the ubiquitin moieties added to the cytoplasmic tails of proteins destined for endocytic internalization. Sec4 and Sec4 effectors were recruited to these puncta with varying efficiency. The puncta appeared to consist of clusters of 80 nm vesicles and although the puncta are largely static, FRAP analysis suggests that traffic into and out of these clusters continues. Cells expressing Sec2GEF-GFP-CUE grew surprisingly well and secreted protein at near normal efficiency, implying that Golgi derived secretory vesicles were delivered to polarized sites of cell growth, where they tethered and fused with the plasma membrane despite the misdirection of Sec4 and its effectors. In total, the results suggest that while Rabs play a critical role in regulating vesicular transport, cells are remarkably tolerant of Rab misdirection.

16.
Traffic ; 11(4): 520-32, 2010 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-20059749

RESUMO

GTPases of the Rab family cycle between an inactive (GDP-bound) and active (GTP-bound) conformation. The active form of the Rab regulates a variety of cellular functions via multiple effectors. Guanine nucleotide exchange factors (GEFs) activate Rabs by accelerating the exchange of GDP for GTP, while GTPase activating proteins (GAPs) inactivate Rabs by stimulating the hydrolysis of GTP. The GTPase Ypt1p is required for endoplasmic reticulum (ER)-Golgi and intra-Golgi traffic in the yeast Saccharomyces cerevisiae. Recent findings, however, have shown that Ypt1p GEF, GAP and an effector are all required for traffic from the early endosome to the Golgi. Here we describe a screen for ypt1 mutants that block traffic from the early endosome to the late Golgi, but not general secretion. This screen has led to the identification of a collection of recessive and dominant mutants that block traffic from the early endosome. While it has long been known that Ypt1p regulates the flow of biosynthetic traffic into the cis side of the Golgi, these findings have established a role for Ypt1p in the regulation of early endosome-Golgi traffic. We propose that Ypt1p regulates the flow of traffic into the cis and trans side of the Golgi via multiple effectors.


Assuntos
Complexo de Golgi/enzimologia , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/enzimologia , Proteínas rab de Ligação ao GTP/metabolismo , Endossomos/enzimologia , Genes Dominantes , Genes Recessivos , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Mutação , Transporte Proteico , Proteínas de Saccharomyces cerevisiae/genética , Proteínas rab de Ligação ao GTP/genética
18.
Proc Natl Acad Sci U S A ; 106(34): 14408-13, 2009 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-19666511

RESUMO

Membrane traffic along the endocytic and exocytic pathways relies on the appropriate localization and activation of a series of different Rab GTPases. Rabs are activated by specific guanine nucleotide exchange factors (GEFs) and inactivated by GTPase-activating proteins (GAPs). GEF cascades, in which one Rab in its GTP-bound form recruits the GEF that activates the next Rab along the pathway, can account for the sequential activation of a series of Rabs, but it does not explain how the first Rab is inactivated after the next Rab has been activated. We present evidence for a counter-current GAP cascade that serves to restrict the spatial and temporal overlap of 2 Rabs, Ypt1p and Ypt32p, on the exocytic pathway in Saccharomyces cerevisiae. We show that Gyp1p, a GAP for Ypt1p, specifically interacts with Ypt32p, and that this interaction is important for the localization and stability of Gyp1p. Moreover, we demonstrate that, in WT cells, Ypt1p compartments are converted over time into Ypt32p compartments, whereas in gyp1Delta cells there is a significant increase in compartments containing both proteins that reflects a slower transition from Ypt1p to Ypt32p. GEF cascades working in concert with counter-current GAP cascades could generate a programmed series of Rab conversions responsible for regulating the choreography of membrane traffic.


Assuntos
Proteínas Ativadoras de GTPase/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Via Secretória , Proteínas rab de Ligação ao GTP/metabolismo , Compartimento Celular , Proteínas Ativadoras de GTPase/genética , Complexo de Golgi/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Immunoblotting , Microscopia de Fluorescência , Mutação , Ligação Proteica , Transporte Proteico , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética , Técnicas do Sistema de Duplo-Híbrido , Proteínas rab de Ligação ao GTP/genética
19.
Artigo em Inglês | MEDLINE | ID: mdl-37102157

RESUMO

Autophagy of the cortical ER in budding yeast was unexpectedly found to require End3, a component of the endocytic machinery that promotes the assembly of actin at endocytic pits on the plasma membrane. The cortical ER transiently interacts with invaginating endocytic pits through a linkage consisting of VAP proteins, oxysterol binding proteins and type I myosins. These proteins are required for actin assembly and for autophagy of the ER. Assembly of actin at these contact sites may direct the movement of ER away from the cortex towards sites of autophagosome assembly.

20.
J Microbiol Biol Educ ; 23(1)2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35496711

RESUMO

The article documents students' experiences with the shift online at the onset of the COVID-19 pandemic and provides informed recommendations to STEM instructors regarding academic integrity and student stress. Over 500 students were surveyed on these topics, including an open-ended question. Students experienced more stress and perceived a greater workload in online courses and therefore preferred in-person courses overall. Personal awareness of cheating during online exams is positively correlated with the proportion of cheating a student perceives. Fear of getting caught is the best cheating deterrent while getting a better grade makes cheating most enticing. Randomization of questions and answer choices is perceived as a highly effective tool to reduce cheating and is reported as the least stress-inducing method. Inability to backtrack and time limits cause students the most stress. Students report that multiple choice questions are the least effective question type to discourage cheating and oral exam questions cause the most stress. Use of camera and lockdown browser or being video- and audio- recorded caused the majority of student stress. Yet, nearly 60% agree that the combination of camera and lockdown browser is an effective deterrent. Recommendations: (i) Be transparent regarding academic dishonesty detection methods and penalties. (ii) Use online invigilating tools. (iii) Synchronize exams and (iv) randomize exam questions. (v) Allow backtracking. (vi) Avoid converting in-person exams to online exams; instead, explore new ways of designing exams for the online environment.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA