Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 118(48)2021 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-34810263

RESUMO

Efficient and targeted sperm motility is essential for animal reproductive success. Sperm from mammals and echinoderms utilize a highly conserved signaling mechanism in which sperm motility is stimulated by pH-dependent activation of the cAMP-producing enzyme soluble adenylyl cyclase (sAC). However, the presence of this pathway in early-branching metazoans has remained unexplored. Here, we found that elevating cytoplasmic pH induced a rapid burst of cAMP signaling and triggered the onset of motility in sperm from the reef-building coral Montipora capitata in a sAC-dependent manner. Expression of sAC in the mitochondrial-rich midpiece and flagellum of coral sperm support a dual role for this molecular pH sensor in regulating mitochondrial respiration and flagellar beating and thus motility. In addition, we found that additional members of the homologous signaling pathway described in echinoderms, both upstream and downstream of sAC, are expressed in coral sperm. These include the Na+/H+ exchanger SLC9C1, protein kinase A, and the CatSper Ca2+ channel conserved even in mammalian sperm. Indeed, the onset of motility corresponded with increased protein kinase A activity. Our discovery of this pathway in an early-branching metazoan species highlights the ancient origin of the pH-sAC-cAMP signaling node in sperm physiology and suggests that it may be present in many other marine invertebrate taxa for which sperm motility mechanisms remain unexplored. These results emphasize the need to better understand the role of pH-dependent signaling in the reproductive success of marine animals, particularly as climate change stressors continue to alter the physiology of corals and other marine invertebrates.


Assuntos
Adenilil Ciclases/metabolismo , Antozoários/metabolismo , Antozoários/fisiologia , Motilidade dos Espermatozoides/fisiologia , Espermatozoides/metabolismo , Animais , Biodiversidade , Cálcio/metabolismo , AMP Cíclico/metabolismo , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Flagelos/metabolismo , Homeostase , Concentração de Íons de Hidrogênio , Masculino , Fosforilação , Filogenia , Reprodução
2.
Nat Protoc ; 18(7): 2014-2031, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-37286821

RESUMO

Spheroid culture systems have allowed in vitro propagation of cells unable to grow in canonical cell culturing conditions, and may capture cellular contexts that model tumor growth better than current model systems. The insights gleaned from genome-wide clustered regularly interspaced short palindromic repeat (CRISPR) screening of thousands of cancer cell lines grown in conventional culture conditions illustrate the value of such CRISPR pooled screens. It is clear that similar genome-wide CRISPR screens of three-dimensional spheroid cultures will be important for future biological discovery. Here, we present a protocol for genome-wide CRISPR screening of three-dimensional neurospheres. While many in-depth protocols and discussions have been published for more typical cell lines, few detailed protocols are currently available in the literature for genome-wide screening in spheroidal cell lines. For those who want to screen such cell lines, and particularly neurospheres, we provide a step-by-step description of assay development tests to be performed before screening, as well as for the screen itself. We highlight considerations of variables that make these screens distinct from, or similar to, typical nonspheroid cell lines throughout. Finally, we illustrate typical outcomes of neurosphere genome-wide screens, and how neurosphere screens typically produce slightly more heterogeneous signal distributions than more canonical cancer cell lines. Completion of this entire protocol will take 8-12 weeks from the initial assay development tests to deconvolution of the sequencing data.


Assuntos
Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Neoplasias , Humanos , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas/genética , Sistemas CRISPR-Cas , Genoma , Linhagem Celular
3.
Cancer Res ; 82(17): 2980-3001, 2022 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-35802025

RESUMO

Forkhead box R2 (FOXR2) is a forkhead transcription factor located on the X chromosome whose expression is normally restricted to the testis. In this study, we performed a pan-cancer analysis of FOXR2 activation across more than 10,000 adult and pediatric cancer samples and found FOXR2 to be aberrantly upregulated in 70% of all cancer types and 8% of all individual tumors. The majority of tumors (78%) aberrantly expressed FOXR2 through a previously undescribed epigenetic mechanism that involves hypomethylation of a novel promoter, which was functionally validated as necessary for FOXR2 expression and proliferation in FOXR2-expressing cancer cells. FOXR2 promoted tumor growth across multiple cancer lineages and co-opted ETS family transcription circuits across cancers. Taken together, this study identifies FOXR2 as a potent and ubiquitous oncogene that is epigenetically activated across the majority of human cancers. The identification of hijacking of ETS transcription circuits by FOXR2 extends the mechanisms known to active ETS transcription factors and highlights how transcription factor families cooperate to enhance tumorigenesis. SIGNIFICANCE: This work identifies a novel promoter that drives aberrant FOXR2 expression and delineates FOXR2 as a pan-cancer oncogene that specifically activates ETS transcriptional circuits across human cancers. See related commentary by Liu and Northcott, p. 2977.


Assuntos
Fatores de Transcrição Forkhead , Neoplasias , Adulto , Carcinogênese/genética , Proliferação de Células , Criança , Epigênese Genética , Fatores de Transcrição Forkhead/genética , Humanos , Masculino , Neoplasias/genética , Oncogenes/genética , Proteínas Proto-Oncogênicas c-ets/genética , Proteínas Proto-Oncogênicas c-ets/metabolismo , Ativação Transcricional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA