Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
J Biol Chem ; 298(1): 101504, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34929168

RESUMO

A network of protein-protein interactions (PPI) is involved in the activation of (+)-7-iso-jasmonoyl-L-isoleucine (JA-Ile), a plant hormone that regulates plant defense responses as well as plant growth and development. In the absence of JA-Ile, inhibitory protein jasmonate-ZIM-domain (JAZ) represses JA-related transcription factors, including a master regulator, MYC. In contrast, when JA-Ile accumulates in response to environmental stresses, PPI occurs between JAZ and the F-box protein COI1, which triggers JAZ degradation, resulting in derepressed MYC that can interact with the transcriptional mediator MED25 and upregulate JA-Ile-related gene expression. Activated JA signaling is eventually suppressed through the catabolism of JA-Ile and feedback suppression by JAZ splice variants containing a cryptic MYC-interacting domain (CMID). However, the detailed structural basis of some PPIs involved in JA-Ile signaling remains unclear. Herein, we analyzed PPI between MYC3 and MED25, focusing on the key interactions that activate the JA-Ile signaling pathway. Biochemical assays revealed that a short binding domain of MED25 (CMIDM) is responsible for the interaction with MYC, and that a bipartite interaction is critical for the formation of a stable complex. We also show the mode of interaction between MED25 and MYC is closely related to that of CMID and MYC. In addition, quantitative analyses on the binding of MYC3-JAZs and MYC3-MED25 revealed the order of binding affinity as JAZJas < MED25CMIDM < JAZCMID, suggesting a mechanism for how the transcriptional machinery causes activation and negative feedback regulation during jasmonate signaling. These results further illuminate the transcriptional machinery responsible for JA-Ile signaling.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ciclopentanos , Proteínas de Ligação a DNA , Isoleucina/análogos & derivados , Transativadores , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Ciclopentanos/metabolismo , Proteínas de Ligação a DNA/metabolismo , Isoleucina/metabolismo , Oxilipinas/metabolismo , Reguladores de Crescimento de Plantas/metabolismo , Domínios e Motivos de Interação entre Proteínas , Transativadores/metabolismo
2.
Plant J ; 110(2): 470-481, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35061931

RESUMO

The nonexpressor of pathogenesis-related (NPR) gene family is well known to play a crucial role in transactivation of TGA transcription factors for salicylic acid (SA)-responsive genes, including pathogenesis-related protein 1 (PR1), during plants' immune response after pathogen attack in the model dicot Arabidopsis thaliana. However, little is known about NPR gene functions in monocots. We therefore explored the functions of NPRs in SA signaling in the model monocot Brachypodium distachyon. BdNPR1 and BdNPR2/3 share structural similarities with A. thaliana AtNPR1/2 and AtNPR3/4 subfamilies, respectively. The transcript level of BdNPR2 but not BdNPR1/3 appeared to be positively regulated in leaves in response to methyl salicylate. Reporter assays in protoplasts showed that BdNPR2 positively regulated BdTGA1-mediated activation of PR1. This transactivation occurred in an SA-dependent manner through SA binding at Arg468 of BdNPR2. In contrast, BdNPR1 functioned as a suppressor of BdNPR2/BdTGA1-mediated transcription of PR1. Collectively, our findings reveal that the TGA-promoted transcription of SA-inducible PR1 is orchestrated by the activator BdNPR2 and the repressor BdNPR1, which function competitively in B. distachyon.


Assuntos
Arabidopsis , Brachypodium , Arabidopsis/genética , Arabidopsis/metabolismo , Brachypodium/genética , Brachypodium/metabolismo , Regulação da Expressão Gênica de Plantas/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ácido Salicílico/metabolismo , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Ativação Transcricional/genética
3.
Int J Mol Sci ; 24(2)2023 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-36674500

RESUMO

JAV1-associated ubiquitin ligase 1 (JUL1) is a RING-type E3 ubiquitin ligase that catalyzes ubiquitination of JAV1, a jasmonate signaling repressor, in Arabidopsis thaliana in response to herbivore attack. Here we present a new insight into the nature of JUL1 as a multi-targeting enzyme for not only JAV1 but also transcription factors (TFs) screened using in vitro and in vivo protein interaction assays. Reporter assays using protoplasts showed that the JUL1-interacting TFs (JiTFs), including ERF15, bZIP53 and ORA59, were involved in transcriptional activation of jasmonate-responsive PDF1.2 and abscisic acid-responsive GEA6. Likewise, assays using mutant plants suggested that the 3 JiTFs were indeed responsible for transcriptional regulation of PDF1.2 and/or GEA6, and ERF15 and ORA59 were substantially responsible for the anti-herbivore trait. In vitro protein ubiqutination assays showed that JUL1 catalyzed ubiqutination of JAV1 but not any of the TFs. This was in accord with the finding that JUL1 abolished JAV1's interference with ERF15 function, according to the reporter assay. Moreover, of great interest is our finding that ERF15 but not bZIP53 or ORA59 serves as a scaffold for the JAV1/JUL1 system, indicating that there is narrow selectivity of the transcriptional reprogramming by the JAV1/JUL1 system.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ubiquitina-Proteína Ligases , Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo
4.
Plant Mol Biol ; 109(4-5): 651-666, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-34476681

RESUMO

KEY MESSAGE: This study describes biological functions of the bHLH transcription factor RERJ1 involved in the jasmonate response and the related defense-associated metabolic pathways in rice, with particular focus on deciphering the regulatory mechanisms underlying stress-induced volatile emission and herbivory resistance. RERJ1 is rapidly and drastically induced by wounding and jasmonate treatment but its biological function remains unknown as yet. Here we provide evidence of the biological function of RERJ1 in plant defense, specifically in response to herbivory and pathogen attack, and offer insights into the RERJ1-mediated regulation of metabolic pathways of specialized defense compounds, such as monoterpene linalool, in possible collaboration with OsMYC2-a well-known master regulator in jasmonate signaling. In rice (Oryza sativa L.), the basic helix-loop-helix (bHLH) family transcription factor RERJ1 is induced under environmental stresses, such as wounding and drought, which are closely linked to jasmonate (JA) accumulation. Here, we investigated the biological function of RERJ1 in response to biotic stresses, such as herbivory and pathogen infection, using an RERJ1-defective mutant. Transcriptome analysis of the rerj1-Tos17 mutant revealed that RERJ1 regulated the expression of a typical family of conserved JA-responsive genes (e.g., terpene synthases, proteinase inhibitors, and jasmonate ZIM domain proteins). Upon exposure to armyworm attack, the rerj1-Tos17 mutant exhibited more severe damage than the wildtype, and significant weight gain of the larvae fed on the mutant was observed. Upon Xanthomonas oryzae infection, the rerj1-Tos17 mutant developed more severe symptoms than the wildtype. Among RERJ1-regulated terpene synthases, linalool synthase expression was markedly disrupted and linalool emission after wounding was significantly decreased in the rerj1-Tos17 mutant. RERJ1 appears to interact with OsMYC2-a master regulator of JA signaling-and many OsJAZ proteins, although no obvious epistatic interaction was detected between them at the transcriptional level. These results indicate that RERJ1 is involved in the transcriptional induction of JA-mediated stress-responsive genes via physical association with OsMYC2 and mediates defense against herbivory and bacterial infection through JA signaling.


Assuntos
Oryza , Fatores de Transcrição Hélice-Alça-Hélice Básicos/genética , Fatores de Transcrição Hélice-Alça-Hélice Básicos/metabolismo , Ciclopentanos/metabolismo , Regulação da Expressão Gênica de Plantas , Herbivoria , Oryza/metabolismo , Oxilipinas/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Transdução de Sinais , Fatores de Transcrição/metabolismo
5.
Biochem Biophys Res Commun ; 592: 54-59, 2022 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-35030423

RESUMO

Proteins and antibodies labeled with biotin have been widely used for protein analysis, enzyme immunoassays, and diagnoses. Presently, they are prepared using either a chemical reaction involving a biotin N-hydroxysuccinimide (NHS) ester compound or by enzymatic biotin ligation using a combination of a biotinylation-peptide tag and Escherichia coli BirA. However, these methods are relatively complicated. Recently BirA was improved to TurboID, a highly active enzyme for proximity labeling with biotin. Here, we demonstrate a novel simple biotin labeling method for proteins and antibodies using TurboID. Purified TurboID was mixed with a protein or an antibody in the presence of biotin and ATP in the general biochemical buffer condition, followed by biotin labeling. Biotin labeling sites by TurboID were found on the surface of green fluorescent protein. Biotin labeling of IκBα by TurboID indicated its binding to RelA. Furthermore, TurboID-dependent biotin labeling of monoclonal antibodies from rabbits and mice could be directly used for immunoblotting detection of specific proteins without the purification step. These results indicate that TurboID provides a very useful and simple method for biotin labeling of functional proteins.


Assuntos
Anticorpos/metabolismo , Biotina/metabolismo , Coloração e Rotulagem/métodos , Biotinilação , Proteínas de Fluorescência Verde/metabolismo , Inibidor de NF-kappaB alfa/metabolismo , Ligação Proteica
6.
Plant Physiol ; 179(4): 1273-1284, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30573672

RESUMO

Jasmonates regulate plant defense and development. In Arabidopsis (Arabidopsis thaliana), JASMONATE-ASSOCIATED VQ-MOTIF GENE1 (JAV1/VQ22) is a repressor of jasmonate-mediated defense responses and is degraded through the ubiquitin-26S proteasome system after herbivory. We found that JAV1-ASSOCIATED UBIQUITIN LIGASE1 (JUL1), a RING-type E3 ubiquitin ligase, interacted with JAV1. JUL1 interacted with JAV1 in the nucleus to ubiquitinate JAV1, leading to proteasomal degradation of JAV1. The transcript levels of JUL1 and JAV1 were coordinately and positively regulated by the CORONATINE INSENSITIVE1-dependent signaling pathway in the jasmonate signaling network, but in a manner that was not dependent on CORONATINE INSENSITIVE1-mediated signaling upon herbivory by Spodoptera litura Gain or loss of function of JUL1 modulated the expression levels of the defensin gene PDF1.2 in leaves, conferring on the plants various defense properties against the generalist herbivore S. litura Because neither the JUL1 mutant nor overexpression lines showed any obvious developmental defects, we concluded that the JAV1/JUL1 system functions as a specific coordinator of reprogramming of plant defense responses. Altogether, our findings offer insight into the mechanisms by which the JAV1/JUL1 system acts specifically to coordinate plant defense responses without interfering with plant development or growth.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Arabidopsis/genética , Regulação da Expressão Gênica de Plantas
7.
Biochim Biophys Acta ; 1863(11): 2766-2783, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27566292

RESUMO

Activation of caspases is crucial for the execution of apoptosis. Although the caspase cascade associated with activation of the initiator caspase-8 (CASP8) has been investigated in molecular and biochemical detail, the physiological role of CASP8 is not fully understood. Here, we identified a two-pore domain potassium channel, tandem-pore domain halothane-inhibited K+ channel 1 (THIK-1), as a novel CASP8 substrate. The intracellular region of THIK-1 was cleaved by CASP8 in apoptotic cells. Overexpression of THIK-1, but not its mutant lacking the CASP8-target sequence in the intracellular portion, accelerated cell shrinkage in response to apoptotic stimuli. In contrast, knockdown of endogenous THIK-1 by RNA interference resulted in delayed shrinkage and potassium efflux. Furthermore, a truncated THIK-1 mutant lacking the intracellular region, which mimics the form cleaved by CASP8, led to a decrease of cell volume of cultured cells without apoptotic stimulation and excessively promoted irregular development of Xenopus embryos. Taken together, these results indicate that THIK-1 is involved in the acceleration of cell shrinkage. Thus, we have demonstrated a novel physiological role of CASP8: creating a cascade that advances the cell to the next stage in the apoptotic process.


Assuntos
Caspase 8/metabolismo , Tamanho Celular , Canais de Potássio de Domínios Poros em Tandem/metabolismo , Animais , Apoptose , Células COS , Caspase 8/genética , Chlorocebus aethiops , Ativação Enzimática , Células HeLa , Humanos , Células MCF-7 , Mutação , Canais de Potássio de Domínios Poros em Tandem/genética , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Interferência de RNA , Transdução de Sinais , Especificidade por Substrato , Fatores de Tempo , Transfecção , Xenopus laevis
8.
Eukaryot Cell ; 14(11): 1144-50, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26385892

RESUMO

Entamoeba histolytica, a microaerophilic protozoan parasite, possesses mitosomes. Mitosomes are mitochondrion-related organelles that have largely lost typical mitochondrial functions, such as those involved in the tricarboxylic acid cycle and oxidative phosphorylation. The biological roles of Entamoeba mitosomes have been a long-standing enigma. We previously demonstrated that sulfate activation, which is not generally compartmentalized to mitochondria, is a major function of E. histolytica mitosomes. Sulfate activation cooperates with cytosolic enzymes, i.e., sulfotransferases (SULTs), for the synthesis of sulfolipids, one of which is cholesteryl sulfate. Notably, cholesteryl sulfate plays an important role in encystation, an essential process in the Entamoeba life cycle. These findings identified a biological role for Entamoeba mitosomes; however, they simultaneously raised a new issue concerning how the reactions of the pathway, separated by the mitosomal membranes, cooperate. Here, we demonstrated that the E. histolytica mitochondrial carrier family (EhMCF) has the capacity to exchange 3'-phosphoadenosine 5'-phosphosulfate (PAPS) with ATP. We also confirmed the cytosolic localization of all the E. histolytica SULTs, suggesting that in Entamoeba, PAPS, which is produced through mitosomal sulfate activation, is translocated to the cytosol and becomes a substrate for SULTs. In contrast, ATP, which is produced through cytosolic pathways, is translocated into the mitosomes and is a necessary substrate for sulfate activation. Taking our findings collectively, we suggest that EhMCF functions as a PAPS/ATP antiporter and plays a crucial role in linking the mitosomal sulfate activation pathway to cytosolic SULTs for the production of sulfolipids.


Assuntos
Trifosfato de Adenosina/metabolismo , Entamoeba histolytica/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Fosfoadenosina Fosfossulfato/metabolismo , Sulfotransferases/metabolismo , Citoplasma/metabolismo , Entamoeba histolytica/genética , Lipídeos/biossíntese , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/genética , Transporte Proteico , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Sulfotransferases/genética
9.
J Biol Chem ; 289(22): 15631-41, 2014 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-24722991

RESUMO

The guanosine 3',5'-bisdiphosphate (ppGpp) signaling system is shared by bacteria and plant chloroplasts, but its role in plants has remained unclear. Here we show that guanylate kinase (GK), a key enzyme in guanine nucleotide biosynthesis that catalyzes the conversion of GMP to GDP, is a target of regulation by ppGpp in chloroplasts of rice, pea, and Arabidopsis. Plants have two distinct types of GK that are localized to organelles (GKpm) or to the cytosol (GKc), with both enzymes being essential for growth and development. We found that the activity of rice GKpm in vitro was inhibited by ppGpp with a Ki of 2.8 µM relative to the substrate GMP, whereas the Km of this enzyme for GMP was 73 µM. The IC50 of ppGpp for GKpm was ∼10 µM. In contrast, the activity of rice GKc was insensitive to ppGpp, as was that of GK from bakers' yeast, which is also a cytosolic enzyme. These observations suggest that ppGpp plays a pivotal role in the regulation of GTP biosynthesis in chloroplasts through specific inhibition of GKpm activity, with the regulation of GTP biosynthesis in chloroplasts thus being independent of that in the cytosol. We also found that GKs of Escherichia coli and Synechococcus elongatus PCC 7942 are insensitive to ppGpp, in contrast to the ppGpp sensitivity of the Bacillus subtilis enzyme. Our biochemical characterization of GK enzymes has thus revealed a novel target of ppGpp in chloroplasts and has uncovered diversity among bacterial GKs with regard to regulation by ppGpp.


Assuntos
Bactérias/enzimologia , Cloroplastos/enzimologia , Guanosina Tetrafosfato/metabolismo , Guanilato Quinases/metabolismo , Ligases/metabolismo , Plantas/enzimologia , Arabidopsis/enzimologia , Arabidopsis/genética , Bacillus subtilis/enzimologia , Bacillus subtilis/genética , Bactérias/genética , Sequência de Bases , Cloroplastos/genética , Escherichia coli/enzimologia , Escherichia coli/genética , Regulação da Expressão Gênica de Plantas , Variação Genética , Guanilato Quinases/genética , Ligases/genética , Dados de Sequência Molecular , Oryza/enzimologia , Oryza/genética , Pisum sativum/enzimologia , Pisum sativum/genética , Plantas/genética , Saccharomyces cerevisiae/enzimologia , Saccharomyces cerevisiae/genética , Transdução de Sinais/fisiologia , Synechococcus/enzimologia , Synechococcus/genética
10.
Biosci Biotechnol Biochem ; 78(6): 1022-5, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25036129

RESUMO

The ppGpp-signaling system functions in plant chloroplasts. In bacteria, a negative effect of ppGpp on adenylosuccinate synthetase (AdSS) has been suggested. Our biochemical analysis also revealed rice AdSS homologs are apparently sensitive to ppGpp. However, further investigation clarified that this phenomenon is cancelled by the high substrate affinity to the enzymes, leading to a limited effect of ppGpp on adenylosuccinate synthesis.


Assuntos
Adenilossuccinato Sintase/metabolismo , Guanosina Tetrafosfato/farmacologia , Oryza/enzimologia , Purinas/biossíntese , Bacillus subtilis/enzimologia , Escherichia coli/enzimologia , Guanosina Tetrafosfato/química , Cinética , Oryza/metabolismo , Homologia de Sequência de Aminoácidos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA