Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 16(1): 721-7, 2016 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-26694819

RESUMO

We present the first example of an all-printed, inexpensive, highly stretchable CNT-based electrochemical sensor and biofuel cell array. The synergistic effect of utilizing specially tailored screen printable stretchable inks that combine the attractive electrical and mechanical properties of CNTs with the elastomeric properties of polyurethane as a binder along with a judiciously designed free-standing serpentine pattern enables the printed device to possess two degrees of stretchability. Owing to these synergistic design and nanomaterial-based ink effects, the device withstands extremely large levels of strains (up to 500% strain) with negligible effect on its structural integrity and performance. This represents the highest stretchability offered by a printed device reported to date. Extensive electrochemical characterization of the printed device reveal that repeated stretching, torsional twisting, and indenting stress has negligible impact on its electrochemical properties. The wide-range applicability of this platform to realize highly stretchable CNT-based electrochemical sensors and biofuel cells has been demonstrated by fabricating and characterizing potentiometric ammonium sensor, amperometric enzyme-based glucose sensor, enzymatic glucose biofuel cell, and self-powered biosensor. Highly stretchable printable multianalyte sensor, multifuel biofuel cell, or any combination thereof can thus be realized using the printed CNT array. Such combination of intrinsically stretchable printed nanomaterial-based electrodes and strain-enduring design patterns holds considerable promise for creating an attractive class of inexpensive multifunctional, highly stretchable printed devices that satisfy the requirements of diverse healthcare and energy fields wherein resilience toward extreme mechanical deformations is mandatory.


Assuntos
Fontes de Energia Bioelétrica , Técnicas Biossensoriais , Nanotecnologia , Nanotubos de Carbono/química , Eletrodos , Impressão
2.
Elife ; 122024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38411140

RESUMO

Eukaryotes respond to secreted metabolites from the microbiome. However, little is known about the effects of exposure to volatiles emitted by microbes or in the environment that we are exposed to over longer durations. Using Drosophila melanogaster, we evaluated a yeast-emitted volatile, diacetyl, found at high levels around fermenting fruits where they spend long periods of time. Exposure to the diacetyl molecules in headspace alters gene expression in the antenna. In vitro experiments demonstrated that diacetyl and structurally related volatiles inhibited conserved histone deacetylases (HDACs), increased histone-H3K9 acetylation in human cells, and caused changes in gene expression in both Drosophila and mice. Diacetyl crosses the blood-brain barrier and exposure caused modulation of gene expression in the mouse brain, therefore showing potential as a neuro-therapeutic. Using two separate disease models previously known to be responsive to HDAC inhibitors, we evaluated the physiological effects of volatile exposure. Diacetyl exposure halted proliferation of a neuroblastoma cell line in culture. Exposure to diacetyl vapors slowed progression of neurodegeneration in a Drosophila model for Huntington's disease. These changes strongly suggest that certain volatiles in the surroundings can have profound effects on histone acetylation, gene expression, and physiology in animals.


Assuntos
Drosophila melanogaster , Histona Desacetilases , Humanos , Camundongos , Animais , Histona Desacetilases/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Histonas/metabolismo , Odorantes , Diacetil , Inibidores de Histona Desacetilases/farmacologia , Drosophila/genética , Sistema Nervoso/metabolismo , Expressão Gênica , Acetilação
3.
bioRxiv ; 2023 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-36865229

RESUMO

Eukaryotes are often exposed to microbes and respond to their secreted metabolites, such as the microbiome in animals or commensal bacteria in roots. Little is known about the effects of long-term exposure to volatile chemicals emitted by microbes, or other volatiles that we are exposed to over a long duration. Using the model system Drosophila melanogaster, we evaluate a yeast emitted volatile, diacetyl, found in high levels around fermenting fruits where they spend long periods of time. We find that exposure to just the headspace containing the volatile molecules can alter gene expression in the antenna. Experiments showed that diacetyl and structurally related volatile compounds inhibited human histone-deacetylases (HDACs), increased histone-H3K9 acetylation in human cells, and caused wide changes in gene expression in both Drosophila and mice. Diacetyl crosses the blood-brain barrier and exposure causes modulation of gene expression in the brain, therefore has potential as a therapeutic. Using two separate disease models known to be responsive to HDAC-inhibitors, we evaluated physiological effects of volatile exposure. First, we find that the HDAC inhibitor also halts proliferation of a neuroblastoma cell line in culture as predicted. Next, exposure to vapors slows progression of neurodegeneration in a Drosophila model for Huntington's disease. These changes strongly suggest that unbeknown to us, certain volatiles in the surroundings can have profound effects on histone acetylation, gene expression and physiology in animals.

4.
Biosens Bioelectron ; 101: 181-187, 2018 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-29073519

RESUMO

This article demonstrates a new smartphone-based reusable glucose meter. The glucose meter includes a custom-built smartphone case that houses a permanent bare sensor strip, a stylus that is loaded with enzyme-carbon composite pellets, and sensor instrumentation circuits. A custom-designed Android-based software application was developed to enable easy and clear display of measured glucose concentration. A typical test involves the user loading the software, using the stylus to dispense an enzymatic pellet on top of the bare sensor strip affixed to the case, and then introducing the sample. The electronic module then acquires and wirelessly transmits the data to the application software to be displayed on the screen. The deployed pellet is then discarded to regain the fresh bare sensor surface. Such a unique working principle allows the system to overcome challenges faced by previously reported reusable sensors, such as enzyme degradation, leaching, and hysteresis effects. Studies reveal that the enzyme loaded in the pellets are stable for up to 8 months at ambient conditions, and generate reproducible sensor signals. The work illustrates the significance of the pellet-based sensing system towards realizing a reusable, point-of-care sensor that snugly fits around a smartphone and which does not face issues usually common to reusable sensors. The versatility of this system allows it to be easily modified to detect other analytes for application in a wide range of healthcare, environmental and defense domains.


Assuntos
Técnicas Biossensoriais/instrumentação , Glicemia/análise , Técnicas Eletroquímicas/instrumentação , Smartphone/instrumentação , Eletrodos , Desenho de Equipamento , Humanos , Sistemas Automatizados de Assistência Junto ao Leito , Reprodutibilidade dos Testes
5.
Adv Mater ; 27(19): 3060-5, 2015 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-25856153

RESUMO

The fabrication and characterization of all-printed, inexpensive, stretchable electrochemical devices is described. These devices are based on specially engineered inks that can withstand severe tensile strain, as high as 100%, without any significant effect on their electrochemical properties. Such stretchable electrochemical devices should be attractive for diverse sensing and energy applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA