RESUMO
The purpose of our study was to identify the low-dimensional latent components, defined hereafter as motor unit modes, underlying the discharge rates of the motor units in two knee extensors (vastus medialis and lateralis, eight men) and two hand muscles (first dorsal interossei and thenars, seven men and one woman) during submaximal isometric contractions. Factor analysis identified two independent motor unit modes that captured most of the covariance of the motor unit discharge rates. We found divergent distributions of the motor unit modes for the hand and vastii muscles. On average, 75% of the motor units for the thenar muscles and first dorsal interosseus were strongly correlated with the module for the muscle in which they resided. In contrast, we found a continuous distribution of motor unit modes spanning the two vastii muscle modules. The proportion of the muscle-specific motor unit modes was 60% for vastus medialis and 45% for vastus lateralis. The other motor units were either correlated with both muscle modules (shared inputs) or belonged to the module for the other muscle (15% for vastus lateralis). Moreover, coherence of the discharge rates between motor unit pools was explained by the presence of shared synaptic inputs. In simulations with 480 integrate-and-fire neurons, we demonstrate that factor analysis identifies the motor unit modes with high levels of accuracy. Our results indicate that correlated discharge rates of motor units that comprise motor unit modes arise from at least two independent sources of common input among the motor neurons innervating synergistic muscles.SIGNIFICANCE STATEMENT It has been suggested that the nervous system controls synergistic muscles by projecting common synaptic inputs to the engaged motor neurons. In our study, we reduced the dimensionality of the output produced by pools of synergistic motor neurons innervating the hand and thigh muscles during isometric contractions. We found two neural modules, each representing a different common input, that were each specific for one of the muscles. In the vastii muscles, we found a continuous distribution of motor unit modes spanning the two synergistic muscles. Some of the motor units from the homonymous vastii muscle were controlled by the dominant neural module of the other synergistic muscle. In contrast, we found two distinct neural modules for the hand muscles.
Assuntos
Contração Isométrica , Músculo Esquelético , Masculino , Feminino , Humanos , Contração Isométrica/fisiologia , Músculo Esquelético/fisiologia , Músculo Quadríceps , Neurônios Motores/fisiologia , Mãos , Eletromiografia , Contração MuscularRESUMO
Emerging questions in neuromuscular physiology revolve around whether males and females share similar neural control in diverse tasks across a broad range of intensities. In order to explore these features, high-density electromyography was used to record the myoelectrical activity of biceps brachii during trapezoidal isometric contractions at 35% and 70% of maximal voluntary force (MVF) on 11 male and 13 female participants. Identified motor units were then classified as lower-threshold (recruited at ≤30%MVF) and higher-threshold (recruited at >30%MVF). The discharge rate, interspike interval variability, recruitment and derecruitment thresholds, and estimates of neural drive to motor neurons were assessed. Female lower-threshold motor units showed higher neural drive (P < 0.001), accompanied by higher discharge rate at recruitment (P = 0.006), plateau (P = 0.001) and derecruitment (P = 0.001). On the other hand, male higher-threshold motor units showed greater neural drive (P = 0.04), accompanied by higher discharge rate at recruitment (P = 0.005), plateau (P = 0.04) and derecruitment (P = 0.01). Motor unit discharge rate normalised by the recruitment threshold was significantly higher in female lower-threshold motor units (P < 0.001), while no differences were observed in higher-threshold motor units. Recruitment and derecruitment thresholds are higher in males across all intensities (P < 0.01). However, males and females have similar activation and deactivation strategies, as evidenced by similar recruitment-to-derecruitment ratios (P > 0.05). This study encompasses a broad intensity range to analyse motor unit sex-related differences, highlighting higher neural drive and discharge rates in female lower-threshold motor units, elevated recruitment and derecruitment thresholds in males, and convergences in activation and deactivation strategies. HIGHLIGHTS: What is the central question of the study? Do male and female motor units behave similarly in low- and high-intensity contractions? What is the main finding and its importance? Female motor units show higher discharge rates in low-intensity tasks and lower discharge rates in high-intensity tasks, with no differences in recruitment behaviour. A broader inter-spike interval variability was also observed in females. These findings underline that there are sex-specific differences concern the firing strategies based on task intensity.
Assuntos
Eletromiografia , Contração Isométrica , Neurônios Motores , Músculo Esquelético , Recrutamento Neurofisiológico , Humanos , Feminino , Masculino , Eletromiografia/métodos , Neurônios Motores/fisiologia , Músculo Esquelético/fisiologia , Adulto , Recrutamento Neurofisiológico/fisiologia , Contração Isométrica/fisiologia , Adulto Jovem , Caracteres Sexuais , Fatores Sexuais , Potenciais de Ação/fisiologiaRESUMO
Growing evidence suggests that respiratory frequency (fR) is a valid marker of effort during high-intensity exercise, including sports of an intermittent nature, like soccer. However, very few attempts have been made so far to monitor fR in soccer with unobtrusive devices. This study assessed the validity of three strain-based commercial wearable devices measuring fR during soccer-specific movements. On two separate visits to the soccer pitch, 15 players performed a 30 min validation protocol wearing either a ComfTech® (CT) vest or a BioharnessTM (BH) 3.0 strap and a Tyme WearTM (TW) vest. fR was extracted from the respiratory waveform of the three commercial devices with custom-made algorithms and compared with that recorded with a reference face mask. The fR time course of the commercial devices generally resembled that of the reference system. The mean absolute percentage error was, on average, 7.03% for CT, 8.65% for TW, and 14.60% for BH for the breath-by-breath comparison and 1.85% for CT, 3.27% for TW, and 7.30% for BH when comparison with the reference system was made in 30 s windows. Despite the challenging measurement scenario, our findings show that some of the currently available wearable sensors are indeed suitable to unobtrusively measure fR in soccer.
Assuntos
Respiração , Futebol , Dispositivos Eletrônicos Vestíveis , Humanos , Futebol/fisiologia , Monitorização Fisiológica/instrumentação , Monitorização Fisiológica/métodos , Masculino , Adulto , Adulto Jovem , Algoritmos , Taxa Respiratória/fisiologiaRESUMO
Because of the biophysical relation between muscle fibre diameter and the propagation velocity of action potentials along the muscle fibres, motor unit conduction velocity could be a non-invasive index of muscle fibre size in humans. However, the relation between motor unit conduction velocity and fibre size has been only assessed indirectly in animal models and in human patients with invasive intramuscular EMG recordings, or it has been mathematically derived from computer simulations. By combining advanced non-invasive techniques to record motor unit activity in vivo, i.e. high-density surface EMG, with the gold standard technique for muscle tissue sampling, i.e. muscle biopsy, here we investigated the relation between the conduction velocity of populations of motor units identified from the biceps brachii muscle, and muscle fibre diameter. We demonstrate the possibility of predicting muscle fibre diameter (R2 = 0.66) and cross-sectional area (R2 = 0.65) from conduction velocity estimates with low systematic bias (â¼2% and â¼4% respectively) and a relatively low margin of individual error (â¼8% and â¼16%, respectively). The proposed neuromuscular interface opens new perspectives in the use of high-density EMG as a non-invasive tool to estimate muscle fibre size without the need of surgical biopsy sampling. The non-invasive nature of high-density surface EMG for the assessment of muscle fibre size may be useful in studies monitoring child development, ageing, space and exercise physiology, although the applicability and validity of the proposed methodology need to be more directly assessed in these specific populations by future studies. KEY POINTS: Because of the biophysical relation between muscle fibre size and the propagation velocity of action potentials along the sarcolemma, motor unit conduction velocity could represent a potential non-invasive candidate for estimating muscle fibre size in vivo. This relation has been previously assessed in animal models and humans with invasive techniques, or it has been mathematically derived from simulations. By combining high-density surface EMG with muscle biopsy, here we explored the relation between the conduction velocity of populations of motor units and muscle fibre size in healthy individuals. Our results confirmed that motor unit conduction velocity can be considered as a novel biomarker of fibre size, which can be adopted to predict muscle fibre diameter and cross-sectional area with low systematic bias and margin of individual error. The proposed neuromuscular interface opens new perspectives in the use of high-density EMG as a non-invasive tool to estimate muscle fibre size without the need of surgical biopsy sampling.
Assuntos
Fibras Musculares Esqueléticas , Condução Nervosa , Criança , Humanos , Eletromiografia/métodos , Condução Nervosa/fisiologia , Fibras Musculares Esqueléticas/fisiologia , Músculo Esquelético/fisiologia , Potenciais de Ação/fisiologiaRESUMO
OBJECTIVE: Public life restrictions associated with the COVID-19 pandemic caused reductions in physical activity (PA) and decreases in mental and somatic health. Considering the interplay between these factors, we investigated the effects of digital home exercise (DHE) during government-enforced lockdowns. METHODS: A multicentre randomised controlled trial was performed allocating healthy individuals from nine countries (N=763; 523 female) to a DHE or an inactive control group. During the 4-week main intervention, DHE members engaged in live-streamed multicomponent home exercise. Subsequently, both groups had access to prerecorded workouts for an additional 4 weeks. Outcomes, assessed weekly, included PA level (Nordic Physical Activity Questionnaire-Short), anxiety (Generalized Anxiety Disorder Scale-7), mental well-being (WHO-5 Questionnaire), sleep quality (Medical Outcome Study Sleep Scale), pain/disability (Chronic Pain Grade Scale) and exercise motivation (Self-Concordance Scale). Mixed models were used for analysis. RESULTS: Live-streamed DHE consistently increased moderate PA (eg, week 1: 1.65 times more minutes per week, 95% CI 1.40 to 1.94) and vigorous PA (eg, week 1: 1.31 times more minutes per week, 95% CI 1.08 to 1.61), although the effects decreased over time. In addition, exercise motivation, sleep quality and anxiety were slightly improved for DHE in the 4-week live streaming period. The same applied to mental well-being (mean difference at week 4: +0.99, 95% CI 0.13 to 1.86), but an inverted trend was observed after live streaming was substituted by prerecorded exercise. CONCLUSIONS: Live-streamed DHE represents an efficacious method to enhance PA and selected markers of health during pandemic-related public life restrictions. However, research on implementation is warranted to reduce dropout rates. TRIAL REGISTRATION NUMBER: DRKS00021273.
Assuntos
COVID-19 , COVID-19/epidemiologia , COVID-19/prevenção & controle , Controle de Doenças Transmissíveis , Exercício Físico , Feminino , Humanos , Pandemias/prevenção & controle , Comportamento SedentárioRESUMO
The persistence of quadriceps weakness represents a major concern following anterior cruciate ligament reconstruction (ACLR). The underlying adaptations occurring in the activity of spinal motoneurons are still unexplored. This study examined the discharge patterns of large populations of motor units (MUs) in the vastus lateralis (VL) and vastus medialis muscles following ACLR. Nine ACLR individuals and 10 controls performed unilateral trapezoidal contractions of the knee extensor muscles at 35%, 50% and 70% of the maximal voluntary isometric force (MVIF). High-density surface electromyography (HDsEMG) was used to record the myoelectrical activity of the vasti muscles in both limbs. HDsEMG signals were decomposed with a convolutive blind source separation method and MU properties were extracted and compared between sides and groups. The ACLR group showed a lower MVIF on the reconstructed side compared to the contralateral side (28.1%; P < 0.001). This force deficit was accompanied by reduced MU discharge rates (â¼21%; P < 0.05), lower absolute MU recruitment and derecruitment thresholds (â¼22% and â¼22.5%, respectively; P < 0.05) and lower input-output gain of motoneurons (27.3%; P = 0.009). Deficits in MU discharge rates of the VL and in absolute recruitment and derecruitment thresholds of both vasti MUs were associated with deficits in MVIF (P < 0.05). A strong between-side correlation was found for MU discharge rates of the VL of ACLR individuals (P < 0.01). There were no significant between-group differences (P > 0.05). These results indicate that mid- to long-term strength deficits following ACLR may be attributable to a reduced neural drive to vasti muscles, with potential changes in excitatory and inhibitory synaptic inputs. KEY POINTS: Impaired expression and control of knee extension forces is common after anterior cruciate ligament reconstruction and is related to high risk of a second injury. To provide novel insights into the neural basis of this impairment, the discharge patterns of motor units in the vastus lateralis and vastus medialis were investigated during voluntary force contractions. There was lower knee extensor strength on the reconstructed side with respect to the contralateral side, which was explained by deficits in motor unit discharge rate and an altered motoneuronal input-output gain. Insufficient excitatory inputs to motoneurons and increased inhibitory afferent signals potentially contributed to these alterations. These results further our understanding of the neural underpinnings of quadriceps weakness following anterior cruciate ligament reconstruction and can help to develop effective rehabilitation protocols to regain muscle strength and reduce the risk of a second injury.
Assuntos
Reconstrução do Ligamento Cruzado Anterior , Humanos , Joelho , Articulação do Joelho , Força Muscular , Músculo QuadrícepsRESUMO
The neural factors underlying the persistency of quadriceps weakness after anterior cruciate ligament reconstruction (ACLR) have been only partially explained. This study examined muscle fiber conduction velocity (MFCV) as an indirect parameter of motor unit recruitment strategies in the vastus lateralis (VL) and medialis (VM) muscles of soccer players with ACLR. High-density surface electromyography (HDsEMG) was acquired from VL and VM in nine soccer players (22.7 ± 2.9 years; BMI: 22.08 ± 1.72 kg·m-2 ; 7.7 ± 2.2 months post-surgery). Voluntary muscle force and the relative myoelectrical activity from the reconstructed and contralateral sides were recorded during linearly increasing isometric knee extension contractions up to 70% of maximal voluntary isometric force (MVIF). The relation of MFCV and force was examined by linear regression analysis at the individual subject level. The initial (intercept), peak (MFCV70 ), and rate of change (slope) of MFCV related to force were compared between limbs and muscles. The MVIF was lower in the reconstructed side than in the contralateral side (-%20.5; P < .05). MFCV intercept was similar among limbs and muscles (P > .05). MFCV70 and MFCV slope were lower in the reconstructed side compared to the contralateral for both VL (-28.5% and -10.1%, respectively; P < .001) and VM (-22.6% and -8.1%, respectively; P < .001). The slope of MFCV was lower in the VL than VM, but only in the reconstructed side (-12.4%; P < .001). These results suggest possible impairments in recruitment strategies of high-threshold motor units (HTMUs) as well as deficits in sarcolemmal excitability, fiber diameter, and discharge rate of knee extensor muscles following ACLR.
Assuntos
Reconstrução do Ligamento Cruzado Anterior , Fibras Musculares Esqueléticas/fisiologia , Músculo Quadríceps/fisiologia , Recrutamento Neurofisiológico/fisiologia , Futebol/fisiologia , Eletromiografia/métodos , Humanos , Contração Isométrica/fisiologia , Modelos Lineares , Masculino , Força Muscular/fisiologia , Debilidade Muscular/fisiopatologia , Músculo Esquelético/fisiologia , Futebol/lesões , Adulto JovemRESUMO
This cross-sectional study aims to elucidate the neural mechanisms underlying the control of knee extension forces in individuals with anterior cruciate ligament reconstruction (ACLR). Eleven soccer players with ACLR and nine control players performed unilateral isometric knee extensions at 10% and 30% of their maximum voluntary force (MVF). Simultaneous recordings of high-density surface electromyography (HDEMG) and force output were conducted for each lower limb, and HDEMG data from the vastus lateralis (VL) and vastus medialis (VM) muscles were decomposed into individual motor unit spike trains. Force steadiness was estimated using the coefficient of variation of force. An intramuscular coherence analysis was adopted to estimate the common synaptic input (CSI) converging to each muscle. A factor analysis was applied to investigate the neural strategies underlying the control of synergistic motor neuron clusters, referred to as motor unit modes. Force steadiness was similar between lower limbs. However, motor neurons innervating the VL on the reconstructed side received a lower proportion of CSI at low-frequency bandwidths (<5 Hz) compared with the unaffected lower limbs (P < 0.01). Furthermore, the reconstructed side demonstrated a higher proportion of motor units associated with the neural input common to the synergistic muscle, as compared with the unaffected lower limbs (P < 0.01). These findings indicate that the VL muscle of reconstructed lower limbs contribute marginally to force steadiness and that a plastic rearrangement in synergistic clusters of motor units involved in the control of knee extension forces is evident following ACLR.NEW & NOTEWORTHY Chronic quadriceps dysfunction is common after anterior cruciate ligament reconstruction (ACLR). We investigated voluntary force control strategies by estimating common inputs to motor neurons innervating the vastii muscles. Our results showed attenuated common inputs to the vastus lateralis and plastic rearrangements in functional clusters of motor neurons modulating knee extension forces in the reconstructed limb. These findings suggest neuroplastic adjustments following ACLR that may occur to fine-tune the control of quadriceps forces.
Assuntos
Reconstrução do Ligamento Cruzado Anterior , Eletromiografia , Neurônios Motores , Plasticidade Neuronal , Músculo Quadríceps , Humanos , Reconstrução do Ligamento Cruzado Anterior/métodos , Masculino , Adulto Jovem , Músculo Quadríceps/inervação , Músculo Quadríceps/fisiopatologia , Neurônios Motores/fisiologia , Eletromiografia/métodos , Adulto , Estudos Transversais , Plasticidade Neuronal/fisiologia , Contração Isométrica/fisiologia , Músculo Esquelético/fisiologia , Músculo Esquelético/inervação , Músculo Esquelético/fisiopatologia , Sinapses/fisiologiaRESUMO
Introduction: The application of neuromuscular electrical stimulation superimposed on voluntary muscle contractions (NMES+) has demonstrated a considerable potential to enhance or restore muscle function in both healthy and individuals with neurological or orthopedic disorders. Improvements in muscle strength and power have been commonly associated with specific neural adaptations. In this study, we investigated changes in the discharge characteristics of the tibialis anterior motor units, following three acute exercises consisting of NMES+, passive NMES and voluntary isometric contractions alone. Methods: Seventeen young participants participated in the study. High-density surface electromyography was used to record myoelectric activity in the tibialis anterior muscle during trapezoidal force trajectories involving isometric contractions of ankle dorsi flexors with target forces set at 35, 50% and 70% of maximal voluntary isometric contraction (MVIC). From decomposition of the electromyographic signal, motor unit discharge rate, recruitment and derecruitment thresholds were extracted and the input-output gain of the motoneuron pool was estimated. Results: Global discharge rate increased following the isometric condition compared to baseline at 35% MVIC while it increased after all experimental conditions at 50% MVIC target force. Interestingly, at 70% MVIC target force, only NMES + led to greater discharge rate compared to baseline. Recruitment threshold decreased after the isometric condition, although only at 50% MVIC. Input-output gain of the motoneurons of the tibialis anterior muscle was unaltered after the experimental conditions. Discussion: These results indicated that acute exercise involving NMES + induces an increase in motor unit discharge rate, particularly when higher forces are required. This reflects an enhanced neural drive to the muscle and might be strongly related to the distinctive motor fiber recruitment characterizing NMES+.
RESUMO
This study aimed at: (1) Reporting COVID-19 symptoms and duration in professional football players; (2) comparing players' pulmonary function before and after COVID-19; (3) comparing players' metabolic power (Pmet ) before and after COVID-19. Thirteen male players (Age: 23.9 ± 4.0 years, VÌO2peak : 49.7 ± 4.0 mL/kg/min) underwent a medical screening and performed a running incremental step test and a spirometry test after COVID-19. Spirometric data were compared with the ones collected at the beginning of the same season. Players' mean Pmet of the 10 matches played before COVID-19 was compared with mean Pmet of the 10 matches played after COVID-19. Players completed a questionnaire on COVID-19 symptoms and duration 6 months following the disease. COVID-19 positivity lasted on average 15 ± 5 days. "General fatigue" and "muscle fatigue" symptoms were reported by all players during COVID-19 and persisted for 77% (general fatigue) and 54% (muscle fatigue) of the players for 37 ± 28 and 38 ± 29 days after the disease, respectively. No significant changes in spirometric measurements were found after COVID-19, even though some impairments at the individual level were observed. Conversely, a linear mixed-effects model analysis showed a significant reduction of Pmet (-4.1 ± 3.5%) following COVID-19 (t = -2.686, p < 0.05). "General fatigue" and "muscle fatigue" symptoms may persist for several weeks following COVID-19 in professional football players and should be considered for a safer return to sport. Players' capacity to compete at high intensities might be compromised after COVID-19.
Assuntos
Desempenho Atlético , COVID-19 , Corrida , Futebol , Adulto , Humanos , Masculino , Adulto Jovem , Desempenho Atlético/fisiologia , Fadiga Muscular , Futebol/fisiologiaRESUMO
Cross talk is an important source of error in interpreting surface electromyography (EMG) signals. Here, we aimed at characterizing cross talk for three groups of synergistic muscles by the identification of individual motor unit action potentials. Moreover, we explored whether spatial filtering (single and double differential) of the EMG signals influences the level of cross talk. Three experiments were conducted. Participants (total 25) performed isometric contractions at 10% of the maximal voluntary contraction (MVC) with digit muscles and knee extensors and at 30% MVC with plantar flexors. High-density surface EMG signals were recorded and decomposed into motor unit spike trains. For each muscle, we quantified the cross talk induced to neighboring muscles and the level of contamination by the nearby muscle activity. We also estimated the influence of cross talk on the EMG power spectrum and intermuscular correlation. Most motor units (80%) generated significant cross-talk signals to neighboring muscle EMG in monopolar recording mode, but this proportion decreased with spatial filtering (50% and 42% for single and double differential, respectively). Cross talk induced overestimations of intermuscular correlation and has a small effect on the EMG power spectrum, which indicates that cross talk is not reduced with high-pass temporal filtering. Conversely, spatial filtering reduced the cross-talk magnitude and the overestimations of intermuscular correlation, confirming to be an effective and simple technique to reduce cross talk. This paper presents a new method for the identification and quantification of cross talk at the motor unit level and clarifies the influence of cross talk on EMG interpretation for muscles with different anatomy.NEW & NOTEWORTHY We proposed a new method for the identification and quantification of cross talk at the motor unit level. We show that surface EMG cross talk can lead to physiological misinterpretations of EMG signals such as overestimations in the muscle activity and intermuscular correlation. Cross talk had little influence on the EMG power spectrum, which indicates that conventional temporal filtering cannot minimize cross talk. Spatial filter (single and double differential) effectively reduces but not abolish cross talk.
Assuntos
Músculo Esquelético , Coxa da Perna , Eletromiografia , Mãos , Humanos , Contração Isométrica , Contração MuscularRESUMO
BACKGROUND: The acute effects of exercise on anterior knee laxity (AKL) and anterior knee stiffness (AKS) have been documented in healthy participants, but only limited evidence has been provided for athletes cleared to return to sports after anterior cruciate ligament (ACL) reconstruction (ACLR). PURPOSE/HYPOTHESIS: The purpose was to determine if 45 minutes of a soccer match simulation lead to acute changes in AKL and AKS in soccer players returning to sport within 12 months after ACLR. We hypothesized that the reconstructed knee of the ACLR group would exhibit an altered response to sport-specific exercise. STUDY DESIGN: Controlled laboratory study. METHODS: A total of 13 soccer players cleared to return to sport after ACLR and 13 healthy control soccer players matched for age, physical activity level, limb dominance, and anthropometric characteristics were recruited. To assess the effects of a standardized soccer match simulation (Soccer Aerobic Field Test [SAFT45]) on AKL and AKS, an arthrometric evaluation was carried out bilaterally before and immediately after SAFT45. To conduct a comprehensive examination of the force-displacement curve, the absolute and side-to-side difference (SSD) values of both AKL and AKS were extracted at 67, 134, and 200 N. RESULTS: The ACLR and control groups showed similar AKL and AKS at baseline (P > .05). In response to SAFT45, laxity increased bilaterally at all force levels by 14% to 17% only in the control group (P < .025). Similarly, AKS at 134 and 200 N decreased in response to SAFT45 only in the control group (10.5% and 20.5%, respectively; P < .025). After SAFT45, the ACLR group had 1.9 and 2.5 times higher SSDs of AKS at 67 and 134 N compared with the control group, respectively (P < .025), as well as a 1.9 times higher SSD of AKS at 134 N compared with baseline (P = .014). CONCLUSION: Soccer players at the time of return to sport after ACLR showed an altered mechanical response to a sport-specific match simulation consisting of bilaterally unchanged AKL and AKS. CLINICAL RELEVANCE: Soccer players showing altered AKL and AKS in response to exercise after ACLR may not be ready to sustain their preinjury levels of sport, thus potentially increasing the risk of second ACL injuries.
Assuntos
Lesões do Ligamento Cruzado Anterior , Reconstrução do Ligamento Cruzado Anterior , Futebol , Lesões do Ligamento Cruzado Anterior/cirurgia , Humanos , Joelho/cirurgia , Articulação do Joelho/cirurgia , Volta ao EsporteRESUMO
There is a growing interest in decomposing high-density surface electromyography (HDsEMG) into motor unit spike trains to improve knowledge on the neural control of muscle contraction. However, the reliability of decomposition approaches is sometimes questioned, especially because they require manual editing of the outputs. We aimed to assess the inter-operator reliability of the identification of motor unit spike trains. Eight operators with varying experience in HDsEMG decomposition were provided with the same data extracted using the convolutive kernel compensation method. They were asked to manually edit them following established procedures. Data included signals from three lower leg muscles and different submaximal intensities. After manual analysis, 126 ± 5 motor units were retained (range across operators: 119-134). A total of 3380 rate of agreement values were calculated (28 pairwise comparisons × 11 contractions/muscles × 4-28 motor units). The median rate of agreement value was 99.6%. Inter-operator reliability was excellent for both mean discharge rate and time at recruitment (intraclass correlation coefficient > 0.99). These results show that when provided with the same decomposed data and the same basic instructions, operators converge toward almost identical results. Our data have been made available so that they can be used for training new operators.
Assuntos
Eletromiografia/normas , Potencial Evocado Motor , Músculo Esquelético/fisiologia , Adulto , Eletromiografia/métodos , Humanos , Masculino , Contração Muscular , Reprodutibilidade dos TestesRESUMO
Muscle fibre conduction velocity (MFCV) is a basic physiological parameter biophysically related to the diameter of muscle fibres and properties of the sarcolemma. The aim of this study was to assess the intersession reproducibility of the relation between voluntary force and estimates of average muscle fibre conduction velocity (MFCV) from multichannel high-density surface electromyographic recordings (HDsEMG). Ten healthy men performed six linearly increasing isometric ankle dorsiflexions on two separate experimental sessions, 4 weeks apart. Each session involved the recordings of voluntary force during maximal isometric (MViF) and submaximal ramp contractions at 35-50-70% of MViF. Concurrently, the HDsEMG activity was detected from the tibialis anterior muscle and MFCV estimates were derived in 250-ms epochs. Absolute and relative reproducibility of MFCV initial value (intercept) and rate of change (regression slope) as a function of force were assessed by within-subject coefficient of correlation (CVw) and with intraclass correlation coefficient (ICC). MFCV was positively correlated with voluntary force (R2 = 0.75 ± 0.12) in all individuals and test conditions (P < 0.001). Average CVw for MFCV intercept and slope were of 2.6 ± 2.0% and 11.9 ± 3.2% and ICC values of 0.96 and 0.94, respectively. Overall, MFCV regression coefficients showed a high degree of intersession reproducibility in both absolute and relative terms. These results may have important practical implications in the tracking of training-induced neuromuscular changes and/or in the monitoring of the progress of neuromuscular disorders when a full sEMG signal decomposition is problematic or not possible.
Assuntos
Eletromiografia/métodos , Contração Isométrica/fisiologia , Fibras Musculares Esqueléticas/fisiologia , Condução Nervosa/fisiologia , Adulto , Humanos , Masculino , Músculo Esquelético/fisiologia , Reprodutibilidade dos Testes , Adulto JovemRESUMO
OBJECTIVE: To investigate the effects of passive cyclic loading (CYC) on anterior tibial translation (ATT), knee extensor and flexor muscle strength and activation in soccer players. DESIGN: Cross-sectional study. SETTING: Functional Assessment Laboratory; Participants: Eight healthy competitive soccer players. INTERVENTIONS: The knee of the dominant limb was subjected to 10â¯min of CYC at 200â¯N force. MAIN OUTCOMES MEASURES: ATT was measured before and after CYC. Percentage of variation was used to estimate ACL creep. Knee extension and flexion maximal voluntary contractions (MVCs) were assessed both before and after CYC. EMG amplitudes of both Biceps Femoris (BF) and Vastus Lateralis (VL) were recorded during both MVCs and CYC. RESULTS: There was a 20.7% increase in ATT after CYC application (p<0.001). Post-CYC agonist and antagonist BF activations were 37.7% and 18.4% lower than pre-CYC ones during MVCs (p<0.05). BF EMG activity in the last 30s of CYC was 19.9% higher than in the first 30s (p<0.05). CONCLUSION: The increased ATT and the variations in neuromuscular activation of the BF in response to loading may expose the knee at higher injury risk by increasing joint instability. Further studies are required to thoroughly investigate these aspects in both laboratory and real-field settings.