Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
RSC Adv ; 14(32): 23332-23340, 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39049891

RESUMO

High-purity CaO cubic crystallites extracted from limestone exhibited excellent activity as base catalysts for waste cooking oil (WCO) conversion into biodiesel. Saponin from Sapindus rarak extract acted as a surfactant in CaO extraction and transformation into well-defined cubic microcrystallites. The application of saponin from Sapindus rarak extract as a surfactant for CaO production results in a high level of CaO purity and particle size reduction compared to directly calcined limestone (CaO-MgO). The catalytic activity was evaluated on CaO from hydrothermal and co-precipitation synthesis, MgO and CaO-MgO derived from limestone, giving hydrothermal CaO catalysts enhanced biodiesel yield. Optimization of transesterification conditions using Box Behnken Design response surface methodology achieved 92.40% biodiesel yield at 65 °C, 3 h reaction time and when using 5% of CaO catalysts.

2.
RSC Adv ; 14(10): 6815-6822, 2024 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-38405073

RESUMO

To consider silver nanoparticles (AgNPs) as a colorimetric sensor for H2O2 we require investigation of the effects of the homogeneity of the nanoparticle size and morphology on the sensor parameters. Uniformly-sized Ag nanoparticles with diameters of ∼18.8 ± 2.8 nm were produced using microwave irradiation (AgNP1) but non-uniform particles with diameters of ∼71.2 ± 19.4 nm (AgNP2) were formed without microwave irradiation. Microwave synthesis produced AgNP1 with superiority in terms of repeatability, selectivity and sensor stability for up to eight months of storage over AgNP2. AgNP1 exhibited higher sensitivity and detection limits in the working range of 0.01-40000 µM as compared to AgNP2. The application of the AgNP sensor to milk samples provided recovery values of 99.09-100.56% for AgNP1 and 98.18-101.90% for AgNP2. Microwave irradiation resulted in strong and uniform PVP-Ag interactions for isotropic growth into small nanoparticles. Size and morphology uniformity determined the characteristics of the AgNP sensor that can be applied for H2O2 detection in a wide range of concentrations and real-time evaluation, with the potential for industrial applications.

3.
RSC Adv ; 14(7): 4509-4517, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38312717

RESUMO

Tautomerism alters the structure and properties of materials, which can be exploited to control their chemical and biological activities. The role of pH-induced tautomerism of polyvinylpyrrolidone (PVP) was determined by measuring the size, stability, and antioxidant and antibacterial properties of microwave synthesized-silver nanoparticles (AgNPs). TEM and XRD analyses confirmed the formation of face-centered cubic silver nanoparticles. PVP stabilized the AgNPs by interaction with the carbonyl or hydroxyl groups depending on the tautomerization under different pH conditions. At pH 4, PVP was stable in the keto tautomer, stabilizing Ag through electron donation of oxygen atoms in the carbonyl group, producing smaller AgNPs with a higher zeta potential. At pH 7 and 9, the enol tautomer PVP stabilized the AgNPs via oxygen atoms in the hydroxyl group, forming large nanoparticles. The keto form of PVP improved the stability and antioxidant and antibacterial properties of AgNPs compared with the enol form. This study also excluded the antioxidant contribution of PVP via hydrogen donation to free radicals. A facile method for controlling the size of AgNPs by adapting the pH-induced tautomerism of PVP that affects their stability and antioxidant and antibacterial activities is thus reported.

4.
RSC Adv ; 13(47): 33471-33483, 2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-38025869

RESUMO

CO2 absorption using sodium silicate aqueous solution in a bubble column has been studied. Sodium silicate aqueous solutions are classified as non-Newtonian fluids that can affect the bubble distribution. The goal of this research is to investigate the effect of a superficial gas velocity (0.85 cm s-1, 2.55 cm s-1, and 4.25 cm s-1) and sodium silicate concentration (0.2% v, 0.6% v, and 1.0% v) on the phenomenon formation of spherical-bubbles, ellipsoidal-bubble, and rod-shape bubbles in bubble column. The experiment was carried out in one minute interval during the five minutes operation. The CO2 absorption and the gel formation is influenced by the pH of the solution where the gas holdup plays an important role in changing the pH. The characterization of the precipitated particles showed that the trona phase (C2H5Na3O8) reached 88% in the preparation of 1% aqueous sodium silicate at a superficial gas velocity of 4.25 cm s-1. The superficial velocity of the gas and the concentration of the sodium silicate solution influence the formation of bubbles. Spherical bubbles and ellipsoidal bubbles were observed in CO2 absorption experiments using a plate sparger, while rod-shaped bubbles were observed in experiments using a ball sparger.

5.
RSC Adv ; 13(21): 14236-14248, 2023 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-37180015

RESUMO

Optimization of hierarchical ZSM-5 structure by variation of the first hydrothermal step at different times provides insight into the evolution of micro/mesopores and its effect as a catalyst for deoxygenation reaction. The degree of tetrapropylammonium hydroxide (TPAOH) incorporation as an MFI structure directing agent and N-cetyl-N,N,N-trimethylammonium bromide (CTAB) as a mesoporogen was monitored to understand the effect towards pore formation. Amorphous aluminosilicate without the framework-bound TPAOH achieved within 1.5 h of hydrothermal treatment provides flexibility to incorporate CTAB for forming well-defined mesoporous structures. Further incorporation of TPAOH within the restrained ZSM-5 framework reduces the flexibility of aluminosilicate gel to interact with CTAB to form mesopores. The optimized hierarchical ZSM-5 was obtained by allowing hydrothermal condensation at 3 h, in which the synergy between the readily formed ZSM-5 crystallites and the amorphous aluminosilicate generates the proximity between micropores and mesopores. A high acidity and micro/mesoporous synergy obtained after 3 h exhibit 71.6% diesel hydrocarbon selectivity because of the improved diffusion of reactant within the hierarchical structures.

6.
RSC Adv ; 13(45): 31989-31999, 2023 Oct 26.
Artigo em Inglês | MEDLINE | ID: mdl-37915446

RESUMO

Conversion of red mud (RM) that contains a high level of silica, alumina and iron minerals into heterogenous catalysts, offers a route for the utilization of abundant toxic by-products of bauxite refining. In this study, the conversion of red mud into mesoporous Fe-aluminosilicate produced selective catalysts for the deoxygenation of waste cooking oil to green diesel hydrocarbons. Direct conversion of red mud in the presence cetyltrimethylammonium bromide into Fe-aluminosilicate (RM-CTA) produced a highly mesoporous structure with oligomeric Fe2O3 clusters within the pores. When red mud was treated with citric acid (RM-CA-CTA), a wide distribution of Fe2O3 particles was obtained on the aluminosilicate external surface. TEM analysis showed a well-defined hexagonal mesoporosity of Fe-aluminosilicate obtained from untreated red mud, while the treated red mud produced lower regularity mesopores. RM-CTA exhibits 60% WCO conversion and 83.72% selectivity towards liquid products with 80.44% diesel hydrocarbon (C11-C18) yield. The high selectivity was due to the high acidity of Fe-aluminosilicate to dissociate the C-O bond and the regularity of mesostructure for efficient hydrocarbon diffusion, preventing a cracking reaction.

7.
RSC Adv ; 13(46): 32648-32659, 2023 Oct 31.
Artigo em Inglês | MEDLINE | ID: mdl-37936636

RESUMO

Saponin is a plant-derived chemical with an amphiphilic glycoconjugate structure extracted from sapindaceae plants like Sapindus rarak. This study investigated saponin extract of Sapindus rarak as a natural template for formation of mesoporous zeolite Y. Surface area and mesoporosity of zeolite Y were improved with optimization of Sapindus rarak extract (SRE) concentration (Y-Ln; n = 2, 5, 10 or 15 mL), reaching 216.26 m2 mesoporous area and 0.214 cm3 g-1 mesoporous volume for Y-L10 samples. A different loading of Ni was impregnated onto Y-L10 zeolite to improve Lewis/Brønsted acidity as catalysts in the deoxygenation of Reutealis trisperma oil (RTO) into hydrocarbon fuels. Impregnating 15% Ni on NaY zeolite enhanced Lewis acidity to 0.4556 mmol g-1, producing 48.8% liquid oil with 85.43% degree of deoxygenation. A high selectivity towards C15 and C17 hydrocarbon was analyzed from liquid yield, indicating the contributing factor from Lewis acidity and mesoporosity to enhance deoxygenation and prevent the hydrocracking reaction.

8.
Int J Biol Macromol ; 204: 593-605, 2022 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-35157900

RESUMO

Conversion of lignocellulosic biowastes from agricultural industry into nanocrystalline cellulose provides pathway to reduce environmental pollution while enhancing the economic value of biowastes. Nanocellulose (NCC) with uniform morphology was isolated from pepper (Piper nigrum L.) stalk waste (PW) using acid hydrolysis method. The role of inorganic acids (sulfuric acid, hydrochloric acid, phosphoric acid), organic acids (oxalic acid, citric acid, acetic acid) and variation of sonication times were investigated on the physicochemical characteristics, self-assembled structure, crystallinity, particle size, zeta potential and thermal stability of the isolated nanocellulose. Hydrolysis using inorganic acids transformed cellulose from PW into a spherical shaped NCC at ~33-67 nm of average diameter. Meanwhile hydrolysis in organic acids produced rod-shaped NCC at 210-321 nm in length. This study highlighted the role of acidity strength for organic acid and inorganic acid in controlling the level of hydrogen bond dissociation and the dissolution of amorphous fragments, which consequently directing the morphology and the physicochemical properties of NCCs.


Assuntos
Resíduos Industriais , Piper nigrum , Celulose/química , Hidrólise , Tamanho da Partícula
9.
Materials (Basel) ; 14(22)2021 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-34832181

RESUMO

Hematite (α-Fe2O3) with uniform hexagonal flake morphology has been successfully synthesized using a combination of gelatin as natural template with F127 via hydrothermal method. The resulting hematite was investigated as adsorbent and photocatalyst for removal of ibuprofen as pharmaceutical waste. Hexagonal flake-like hematite was obtained following calcination at 500 °C with the average size was measured at 1-3 µm. Increasing the calcination temperature to 700 °C transformed the uniform hexagonal structure into cubic shape morphology. Hematite also showed high thermal stability with increasing the calcination temperatures; however, the surface area was reduced from 47 m2/g to 9 m2/g. FTIR analysis further confirmed the formation Fe-O-Fe bonds, and the main constituent elements of Fe and O were observed in EDX analysis for all samples. α-Fe2O3 samples have an average adsorption capacity of 55-25.5 mg/g at 12-22% of removal efficiency when used as adsorbent for ibuprofen. The adsorption capacity was reduced as the calcination temperatures increased due to the reduction of available surface area of the hexagonal flakes after transforming into cubes. Photocatalytic degradation of ibuprofen using hematite flakes achieved 50% removal efficiency; meanwhile, combination of adsorption and photocatalytic degradation further removed 80% of ibuprofen in water/hexane mixtures.

10.
Environ Sci Pollut Res Int ; 28(28): 37354-37370, 2021 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33712959

RESUMO

Red mud as industrial waste from bauxite was utilized as a precursor for the synthesis of mesoporous ZSM-5. A high concentration of iron oxide in red mud was successfully removed using alkali fusion treatment. Mesoporous ZSM-5 was synthesized using cetyltrimethylammonium bromide (CTABr) as a template via dual-hydrothermal method, and the effect of crystallization time was investigated towards the formation of mesopores. Characterization using X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FTIR), N2 adsorption-desorption, scanning electron microscopy (SEM), and transmission electron microscopy (TEM) indicated the formation of cubic crystallite ZSM-5 with high surface area and mesopore volume within 6 h of crystallization. Increasing the crystallization time revealed the evolution of highly crystalline ZSM-5; however, the surface area and mesoporosity were significantly reduced. The effect of mesoporosity was investigated on the adsorption of methylene blue (MB). Kinetic and thermodynamic analysis of MB adsorption on mesoporous ZSM-5 was carried out at a variation of adsorption parameters such as the concentration of MB solution, the temperatures of solution, and the amount of adsorbent. Finally, methanol, 1-butanol, acetone, hydrochloric acid (HCl), and acetonitrile were used as desorbing agents to investigate the reusability and stability of mesoporous ZSM-5 as an adsorbent for MB removal.


Assuntos
Azul de Metileno , Poluentes Químicos da Água , Adsorção , Cinética , Microscopia Eletrônica de Transmissão , Espectroscopia de Infravermelho com Transformada de Fourier , Difração de Raios X
11.
RSC Adv ; 11(36): 21885-21896, 2021 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-35480811

RESUMO

The activity of mesoporous Al-MCM-41 for deoxygenation of Reutealis trisperma oil (RTO) was enhanced via modification with NiO nanoparticles. Deoxygenation at atmospheric pressure and under H2 free conditions required acid catalysts to ensure the removal of the oxygenated fragments in triglycerides to form liquid hydrocarbons. NiO at different weight loadings was impregnated onto Al-MCM-41 and the changes of Lewis/Brønsted acidity and mesoporosity of the catalysts were investigated. The activity of Al-MCM-41 was enhanced when impregnated with NiO due to the increase of Lewis acidity originating from NiO nanoparticles and the mesoporosity of Al-MCM-41. Increasing the NiO loading enhanced the Lewis acidity but not Brønsted acidity, leading to a higher conversion towards liquid hydrocarbon yield. Impregnation with 10% of NiO on Al-MCM-41 increased the conversion of RTO to hydrocarbons via the deoxygenation pathway and reduced the products from cracking reaction, consequently enhancing the green diesel (C11-C18) hydrocarbon products.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA