Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Adv Sci (Weinh) ; : e2402557, 2024 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-38874400

RESUMO

In oxygen (O2)-controlled cell culture, an indispensable tool in biological research, it is presumed that the incubator setpoint equals the O2 tension experienced by cells (i.e., pericellular O2). However, it is discovered that physioxic (5% O2) and hypoxic (1% O2) setpoints regularly induce anoxic (0% O2) pericellular tensions in both adherent and suspension cell cultures. Electron transport chain inhibition ablates this effect, indicating that cellular O2 consumption is the driving factor. RNA-seq analysis revealed that primary human hepatocytes cultured in physioxia experience ischemia-reperfusion injury due to cellular O2 consumption. A reaction-diffusion model is developed to predict pericellular O2 tension a priori, demonstrating that the effect of cellular O2 consumption has the greatest impact in smaller volume culture vessels. By controlling pericellular O2 tension in cell culture, it is found that hypoxia vs. anoxia induce distinct breast cancer transcriptomic and translational responses, including modulation of the hypoxia-inducible factor (HIF) pathway and metabolic reprogramming. Collectively, these findings indicate that breast cancer cells respond non-monotonically to low O2, suggesting that anoxic cell culture is not suitable for modeling hypoxia. Furthermore, it is shown that controlling atmospheric O2 tension in cell culture incubators is insufficient to regulate O2 in cell culture, thus introducing the concept of pericellular O2-controlled cell culture.

2.
Front Immunol ; 14: 1278397, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38169677

RESUMO

Dendritic cells (DCs), professional antigen-presenting cells, function as sentinels of the immune system. DCs initiate and fine-tune adaptive immune responses by presenting antigenic peptides to B and T lymphocytes to mount an effective immune response against cancer and pathogens. However, hypoxia, a condition characterized by low oxygen (O2) tension in different tissues, significantly impacts DC functions, including antigen uptake, activation and maturation, migration, as well as T-cell priming and proliferation. In this study, we employed O2-releasing biomaterials (O2-cryogels) to study the effect of localized O2 supply on human DC phenotype and functions. Our results indicate that O2-cryogels effectively mitigate DC exposure to hypoxia under hypoxic conditions. Additionally, O2-cryogels counteract hypoxia-induced inhibition of antigen uptake and migratory activity in DCs through O2 release and hyaluronic acid (HA) mediated mechanisms. Furthermore, O2-cryogels preserve and restore DC maturation and co-stimulation markers, including HLA-DR, CD86, and CD40, along with the secretion of proinflammatory cytokines in hypoxic conditions. Finally, our findings demonstrate that the supplemental O2 released from the cryogels preserves DC-mediated T-cell priming, ultimately leading to the activation and proliferation of allogeneic CD3+ T cells. This work emphasizes the potential of local oxygenation as a powerful immunomodulatory agent to improve DC activation and functions in hypoxia, offering new approaches for cancer and infectious disease treatments.


Assuntos
Células Dendríticas , Neoplasias , Humanos , Materiais Biocompatíveis/farmacologia , Criogéis/farmacologia , Fenótipo , Antígenos/farmacologia , Hipóxia
3.
bioRxiv ; 2023 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-37873449

RESUMO

Oxygen (O2) tension plays a key role in tissue function and pathophysiology. O2-controlled cell culture, in which the O2 concentration in an incubator's gas phase is controlled, is an indispensable tool to study the role of O2 in vivo. For this technique, it is presumed that the incubator setpoint is equal to the O2 tension that cells experience (i.e., pericellular O2). We discovered that physioxic (5% O2) and hypoxic (1% O2) setpoints regularly induce anoxic (0.0% O2) pericellular tensions in both adherent and suspension cell cultures. Electron transport chain inhibition ablates this effect, indicating that cellular O2 consumption is the driving factor. RNA-seq revealed that primary human hepatocytes cultured in physioxia experience ischemia-reperfusion injury due to anoxic exposure followed by rapid reoxygenation. To better understand the relationship between incubator gas phase and pericellular O2 tensions, we developed a reaction-diffusion model that predicts pericellular O2 tension a priori. This model revealed that the effect of cellular O2 consumption is greatest in smaller volume culture vessels (e.g., 96-well plate). By controlling pericellular O2 tension in cell culture, we discovered that MCF7 cells have stronger glycolytic and glutamine metabolism responses in anoxia vs. hypoxia. MCF7 also expressed higher levels of HIF2A, CD73, NDUFA4L2, etc. and lower levels of HIF1A, CA9, VEGFA, etc. in response to hypoxia vs. anoxia. Proteomics revealed that 4T1 cells had an upregulated epithelial-to-mesenchymal transition (EMT) response and downregulated reactive oxygen species (ROS) management, glycolysis, and fatty acid metabolism pathways in hypoxia vs. anoxia. Collectively, these results reveal that breast cancer cells respond non-monotonically to low O2, suggesting that anoxic cell culture is not suitable to model hypoxia. We demonstrate that controlling atmospheric O2 tension in cell culture incubators is insufficient to control O2 in cell culture and introduce the concept of pericellular O2-controlled cell culture.

4.
Macromol Biosci ; 22(2): e2100347, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-34800001

RESUMO

Self-assembling peptides are a popular vector for therapeutic cargo delivery due to their versatility, tunability, and biocompatibility. Accurately predicting secondary and supramolecular structures of self-assembling peptides is essential for de novo peptide design. However, computational modeling of such assemblies is not yet able to accurately predict structure formation for many peptide sequences. This review identifies patterns in literature between secondary and supramolecular structures, primary sequences, and applications to provide a guide for informed peptide design. An overview of peptide structures, their applications as nanocarriers, and analytical methods for characterizing secondary and supramolecular structure is examined. A top-down approach is then used to identify trends between peptide sequence and assembly structure from the current literature, including an analysis of the drivers at work, such as local and nonlocal sequence effects and solution conditions.


Assuntos
Peptídeos , Sequência de Aminoácidos , Peptídeos/química
5.
Biomedicines ; 10(9)2022 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-36140265

RESUMO

Glioblastoma multiforme (GBM) is the most aggressive central nervous system tumor, and standard treatment, including surgical resection, radiation, and chemotherapy, has not significantly improved patient outcomes over the last 20 years. Temozolomide (TMZ), the prodrug most commonly used to treat GBM, must pass the blood-brain barrier and requires a basic pH to convert to its active form. Due to these barriers, less than 30% of orally delivered TMZ reaches the central nervous system and becomes bioactive. In this work, we have developed a novel biomaterial delivery system to convert TMZ to its active form and that shows promise for intracellular TMZ delivery. Self-assembling peptides were characterized under several different assembly conditions and evaluated for TMZ loading and conversion. Both solvent and method of assembly were found to affect the supramolecular and secondary structure of peptide assemblies. Additionally, as peptides degraded in phosphate-buffered saline, TMZ was rapidly converted to its active form. This work demonstrates that peptide-based drug delivery systems can effectively create a local stimulus during drug delivery while remaining biocompatible. This principle could be used in many future biomedical applications in addition to cancer treatment, such as wound healing and regenerative medicine.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA