Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
JAMA ; 321(14): 1391-1399, 2019 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-30964529

RESUMO

Importance: Data sets linking comprehensive genomic profiling (CGP) to clinical outcomes may accelerate precision medicine. Objective: To assess whether a database that combines EHR-derived clinical data with CGP can identify and extend associations in non-small cell lung cancer (NSCLC). Design, Setting, and Participants: Clinical data from EHRs were linked with CGP results for 28 998 patients from 275 US oncology practices. Among 4064 patients with NSCLC, exploratory associations between tumor genomics and patient characteristics with clinical outcomes were conducted, with data obtained between January 1, 2011, and January 1, 2018. Exposures: Tumor CGP, including presence of a driver alteration (a pathogenic or likely pathogenic alteration in a gene shown to drive tumor growth); tumor mutation burden (TMB), defined as the number of mutations per megabase; and clinical characteristics gathered from EHRs. Main Outcomes and Measures: Overall survival (OS), time receiving therapy, maximal therapy response (as documented by the treating physician in the EHR), and clinical benefit rate (fraction of patients with stable disease, partial response, or complete response) to therapy. Results: Among 4064 patients with NSCLC (median age, 66.0 years; 51.9% female), 3183 (78.3%) had a history of smoking, 3153 (77.6%) had nonsquamous cancer, and 871 (21.4%) had an alteration in EGFR, ALK, or ROS1 (701 [17.2%] with EGFR, 128 [3.1%] with ALK, and 42 [1.0%] with ROS1 alterations). There were 1946 deaths in 7 years. For patients with a driver alteration, improved OS was observed among those treated with (n = 575) vs not treated with (n = 560) targeted therapies (median, 18.6 months [95% CI, 15.2-21.7] vs 11.4 months [95% CI, 9.7-12.5] from advanced diagnosis; P < .001). TMB (in mutations/Mb) was significantly higher among smokers vs nonsmokers (8.7 [IQR, 4.4-14.8] vs 2.6 [IQR, 1.7-5.2]; P < .001) and significantly lower among patients with vs without an alteration in EGFR (3.5 [IQR, 1.76-6.1] vs 7.8 [IQR, 3.5-13.9]; P < .001), ALK (2.1 [IQR, 0.9-4.0] vs 7.0 [IQR, 3.5-13.0]; P < .001), RET (4.6 [IQR, 1.7-8.7] vs 7.0 [IQR, 2.6-13.0]; P = .004), or ROS1 (4.0 [IQR, 1.2-9.6] vs 7.0 [IQR, 2.6-13.0]; P = .03). In patients treated with anti-PD-1/PD-L1 therapies (n = 1290, 31.7%), TMB of 20 or more was significantly associated with improved OS from therapy initiation (16.8 months [95% CI, 11.6-24.9] vs 8.5 months [95% CI, 7.6-9.7]; P < .001), longer time receiving therapy (7.8 months [95% CI, 5.5-11.1] vs 3.3 months [95% CI, 2.8-3.7]; P < .001), and increased clinical benefit rate (80.7% vs 56.7%; P < .001) vs TMB less than 20. Conclusions and Relevance: Among patients with NSCLC included in a longitudinal database of clinical data linked to CGP results from routine care, exploratory analyses replicated previously described associations between clinical and genomic characteristics, between driver mutations and response to targeted therapy, and between TMB and response to immunotherapy. These findings demonstrate the feasibility of creating a clinicogenomic database derived from routine clinical experience and provide support for further research and discovery evaluating this approach in oncology.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Bases de Dados Genéticas , Registros Eletrônicos de Saúde , Imunoterapia , Neoplasias Pulmonares/genética , Mutação , Idoso , Biomarcadores Tumorais/análise , Carcinoma Pulmonar de Células não Pequenas/terapia , Conjuntos de Dados como Assunto , Feminino , Perfilação da Expressão Gênica , Genômica , Genótipo , Humanos , Masculino , Registro Médico Coordenado , Pessoa de Meia-Idade , Medicina de Precisão , Receptor de Morte Celular Programada 1/análise
2.
Community Genet ; 8(4): 209-16, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16244474

RESUMO

Without patent protection, biomedical progress would be severely diminished. Conditions under the current patent regime are characterized by rapid advancement made possible by cooperative licensing, collaboration and partnerships between and among various entities, and the drive to bring successful products to market both in order to make profits and to further the cause of humanity. The financial advantages associated with patent-driven corporate participation are the lifeline of innovation. While granting limited periods of exclusivity under the patent system necessary to entice innovation is a calculated sacrifice, the enormous benefits of fully-disclosed pharmaceutical and genetic discoveries result in a handsome net benefit over the alternative of resource-limited research clouded by a shroud of secrecy as a substitute for patent protection. By examining characteristics of the pharmaceutical and biotechnology industries and the critical role the patent regime plays in driving investment in these areas, a clearer picture of the necessity of strong intellectual property rights in the context of genetics will emerge.


Assuntos
Biotecnologia , Indústria Farmacêutica , Genes , Patentes como Assunto , Humanos , Disseminação de Informação , Propriedade Intelectual , Pesquisa , Seguridade Social
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA