Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Br J Neurosurg ; : 1-6, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38757813

RESUMO

PURPOSE: The Rotterdam Scoring System (RSS) attempts to prognosticate early mortality and early functional outcome in patients with traumatic brain injury (TBI) based on non-contrast head computed tomography (CT) imaging findings. The purpose of this study was to identify the relationship between RSS scores and long-term outcomes in patients with severe TBI. METHODS: Consecutively treated patients with severe TBI enrolled between 2008 and 2011, in the prospective, observational, Brain Trauma Research Center database were included. The Glasgow Outcome Scale (GOS) was used to measure long-term functional outcomes at three, six, 12, and 24 months. GOS scores were categorized into favorable (GOS = 4-5) and unfavorable (GOS = 1-3) outcomes. RSS scores were calculated at the time of image acquisition. RESULTS: Of the 89 patients included, 74 (83.4%) were male, 81 (91.0%) were Caucasian, and the mean age of the cohort was 41.9 ± 18.5 years old. Patients with an RSS score of 3 and lower were more likely to have a favorable outcome with increased survival rates than patients with RSS scores greater than 3. CONCLUSIONS: The RSS score determined on the head CT scan acquired at admission in a cohort of patients with severe TBI correlated with long-term survival and functional outcomes up to two years following injury.

2.
Ann Neurol ; 92(4): 663-669, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35713346

RESUMO

We determined the incidence of post-traumatic epilepsy after severe traumatic brain injury. Of 392 patients surviving to discharge, cumulative incidence of post-traumatic epilepsy was 25% at 5 years and 32% at 15 years, an increase compared with historical reports. Among patients with one late seizure (>7 days post-trauma), the risk of seizure recurrence was 62% after 1 year and 82% at 10 years. Competing hazards regression identified age, decompressive hemicraniectomy, and intracranial infection as independent predictors of post-traumatic epilepsy. Patients with severe traumatic brain injury and a single late post-traumatic seizure will likely require long-term antiseizure medicines. ANN NEUROL 2022;92:663-669.


Assuntos
Lesões Encefálicas Traumáticas , Epilepsia Pós-Traumática , Epilepsia , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/epidemiologia , Epilepsia/epidemiologia , Epilepsia/etiologia , Epilepsia Pós-Traumática/epidemiologia , Epilepsia Pós-Traumática/etiologia , Humanos , Incidência , Fatores de Risco , Convulsões/complicações
3.
Neurosurg Focus ; 55(4): E4, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37778037

RESUMO

OBJECTIVE: Chronic subdural hematoma (cSDH) has a reported 10%-24% rate of recurrence after surgery, and prognostic models for recurrence have produced equivocal results. The objective of this study was to leverage a data mining algorithm, chi-square automatic interaction detection (CHAID), which can incorporate continuous, nominal, and binary data into a decision tree, to identify the most robust predictors of repeat surgery for cSDH patients. METHODS: This was a retrospective cohort study of all patients with SDH from two level 1 trauma centers at a single institution. All patients underwent cSDH evacuation performed by 15 neurosurgeons between 2011 and 2020. The primary outcome was the rate of repeat surgery for recurrent cSDH following the initial evacuation. The authors used CHAID to identify relevant predictors of repeat surgery, including age, sex, comorbidities, postsurgical complications, platelet count prior to the first procedure, midline shift prior to the first procedure, hematoma volume, and preoperative use of anticoagulants, antiplatelets, or statins. RESULTS: Sixty (13.8%) of 435 study-eligible patients (average age 74.0 years) had a cSDH recurrence. These patients had 2.0 times greater odds of having used anticoagulants. The final CHAID model had an overall accuracy of 87.4% and an area under the curve of 0.76. According to the model, the predictor with the strongest association with cSDH recurrence was admission platelet count. Approximately 26% of patients (n = 23/87) with an admission platelet count < 157 × 109/L had a cSDH recurrence, whereas none of the 44 patients with admission platelets > 313 × 109/L had a recurrence. Approximately 17% of patients in the 157-313 × 109/L platelet group who had used preoperative statins required a second procedure, which was associated with a 2.3 times increased risk for repeat surgery compared to those who had not used statins preoperatively. Among those who had not used preoperative statins, a platelet count ≤ 179 × 109/L on admission for the first procedure was the strongest differentiator for a second surgery (n = 5/22 [23%]), which increased the risk of recurrence by 4.5 times. Among the patients using preoperative statins, the use of anticoagulants was the strongest differentiator for requiring repeat surgery (n = 11/33 [33%]). CONCLUSIONS: The described model identified platelet count on admission as the most important predictor of repeat cSDH surgery, followed by preoperative statin use and anticoagulant use. Critical cutoffs for platelet count were identified, which future studies should evaluate to determine if they are modifiable or reflective of underlying disease states.


Assuntos
Hematoma Subdural Crônico , Inibidores de Hidroximetilglutaril-CoA Redutases , Humanos , Idoso , Estudos Retrospectivos , Contagem de Plaquetas , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Anticoagulantes/efeitos adversos , Prognóstico , Hematoma Subdural Crônico/tratamento farmacológico , Hematoma Subdural Crônico/cirurgia , Recidiva , Drenagem
4.
Radiology ; 304(2): 385-394, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35471108

RESUMO

Background After severe traumatic brain injury (sTBI), physicians use long-term prognostication to guide acute clinical care yet struggle to predict outcomes in comatose patients. Purpose To develop and evaluate a prognostic model combining deep learning of head CT scans and clinical information to predict long-term outcomes after sTBI. Materials and Methods This was a retrospective analysis of two prospectively collected databases. The model-building set included 537 patients (mean age, 40 years ± 17 [SD]; 422 men) from one institution from November 2002 to December 2018. Transfer learning and curriculum learning were applied to a convolutional neural network using admission head CT to predict mortality and unfavorable outcomes (Glasgow Outcomes Scale scores 1-3) at 6 months. This was combined with clinical input for a holistic fusion model. The models were evaluated using an independent internal test set and an external cohort of 220 patients with sTBI (mean age, 39 years ± 17; 166 men) from 18 institutions in the Transforming Research and Clinical Knowledge in Traumatic Brain Injury (TRACK-TBI) study from February 2014 to April 2018. The models were compared with the International Mission on Prognosis and Analysis of Clinical Trials in TBI (IMPACT) model and the predictions of three neurosurgeons. Area under the receiver operating characteristic curve (AUC) was used as the main model performance metric. Results The fusion model had higher AUCs than did the IMPACT model in the prediction of mortality (AUC, 0.92 [95% CI: 0.86, 0.97] vs 0.80 [95% CI: 0.71, 0.88]; P < .001) and unfavorable outcomes (AUC, 0.88 [95% CI: 0.82, 0.94] vs 0.82 [95% CI: 0.75, 0.90]; P = .04) on the internal data set. For external TRACK-TBI testing, there was no evidence of a significant difference in the performance of any models compared with the IMPACT model (AUC, 0.83; 95% CI: 0.77, 0.90) in the prediction of mortality. The Imaging model (AUC, 0.73; 95% CI: 0.66-0.81; P = .02) and the fusion model (AUC, 0.68; 95% CI: 0.60, 0.76; P = .02) underperformed as compared with the IMPACT model (AUC, 0.83; 95% CI: 0.77, 0.89) in the prediction of unfavorable outcomes. The fusion model outperformed the predictions of the neurosurgeons. Conclusion A deep learning model of head CT and clinical information can be used to predict 6-month outcomes after severe traumatic brain injury. © RSNA, 2022 Online supplemental material is available for this article. See also the editorial by Haller in this issue.


Assuntos
Lesões Encefálicas Traumáticas , Aprendizado Profundo , Adulto , Lesões Encefálicas Traumáticas/diagnóstico por imagem , Lesões Encefálicas Traumáticas/cirurgia , Escala de Coma de Glasgow , Humanos , Masculino , Prognóstico , Estudos Retrospectivos , Tomografia Computadorizada por Raios X
5.
Medicina (Kaunas) ; 56(6)2020 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-32570722

RESUMO

Background and Objectives: The injury burden after head trauma is exacerbated by secondary sequelae, which leads to further neuronal loss. B-cell lymphoma 2 (Bcl-2) is an anti-apoptotic protein and a key modulator of the programmed cell death (PCD) pathways. The current study evaluates the clinical evidence on Bcl-2 and neurological recovery in patients after traumatic brain injury (TBI). Materials and Methods: All studies in English were queried from the National Library of Medicine PubMed database using the following search terms: (B-cell lymphoma 2/Bcl-2/Bcl2) AND (brain injury/head injury/head trauma/traumatic brain injury) AND (human/patient/subject). There were 10 investigations conducted on Bcl-2 and apoptosis in TBI patients, of which 5 analyzed the pericontutional brain tissue obtained from surgical decompression, 4 studied Bcl-2 expression as a biomarker in the cerebrospinal fluid (CSF), and 1 was a prospective randomized trial. Results: Immunohistochemistry (IHC) in 94 adults with severe TBI showed upregulation of Bcl-2 in the pericontusional tissue. Bcl-2 was detected in 36-75% of TBI patients, while it was generally absent in the non-TBI controls, with Bcl-2 expression increased 2.9- to 17-fold in TBI patients. Terminal deoxynucleotidyl transferase-mediated biotinylated dUTP nick-end labeling (TUNEL) positivity for cell death was detected in 33-73% of TBI patients. CSF analysis in 113 TBI subjects (90 adults, 23 pediatric patients) showed upregulation of Bcl-2 that peaked on post-injury day 3 and subsequently declined after day 5. Increased Bcl-2 in the peritraumatic tissue, rising CSF Bcl-2 levels, and the variant allele of rs17759659 are associated with improved mortality and better outcomes on the Glasgow Outcome Score (GOS). Conclusions: Bcl-2 is upregulated in the pericontusional brain and CSF in the acute period after TBI. Bcl-2 has a neuroprotective role as a pro-survival protein in experimental models, and increased expression in patients can contribute to improvement in clinical outcomes. Its utility as a biomarker and therapeutic target to block neuronal apoptosis after TBI warrants further evaluation.


Assuntos
Apoptose/fisiologia , Lesões Encefálicas Traumáticas/complicações , Linfoma de Células B/líquido cefalorraquidiano , Biomarcadores/análise , Biomarcadores/líquido cefalorraquidiano , Lesões Encefálicas Traumáticas/líquido cefalorraquidiano , Lesões Encefálicas Traumáticas/fisiopatologia , Humanos , Linfoma de Células B/fisiopatologia , Proteínas Proto-Oncogênicas c-bcl-2/análise , Proteínas Proto-Oncogênicas c-bcl-2/líquido cefalorraquidiano
6.
Neurocrit Care ; 20(1): 49-53, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-23943318

RESUMO

INTRODUCTION: There is clinical equipoise regarding whether neurointensive care unit management of external ventricular drains (EVD) in severe traumatic brain injury (TBI) should involve an open EVD, with continuous drainage of cerebrospinal fluid (CSF), versus a closed EVD, with intermittent opening as necessary to drain CSF. In a matched cohort design, we assessed the relative impact of continuous versus intermittent CSF drainage on intracranial pressure in the management of adult severe TBI. METHODS: Sixty-two severe TBI patients were assessed. Thirty-one patients managed by open EVD drainage were matched by age, sex, and injury severity (initial Glasgow Coma Scale (GCS) score) to 31 patients treated with a closed EVD drainage. Patients in the open EVD group also had a parenchymal intracranial pressure (ICP) monitor placed through an adjacent burr hole, allowing real-time recording of ICP. Hourly ICP and other pertinent data, such as length of stay in intensive care unit (LOS-ICU), Injury Severity Score, and survival status, were extracted from our prospective database. RESULTS: With age, injury severity (initial GCS score), and neurosurgical intervention adjusted for, there was a statistically significant difference of 5.66 mmHg in mean ICP (p < 0.0001) between the open and the closed EVD groups, with the closed EVD group exhibiting greater mean ICP. ICP burden (ICP ≥ 20 mmHg) was shown to be significantly higher in the intermittent EVD group (p = 0.0002) in comparison with the continuous EVD group. CONCLUSION: Continuous CSF drainage via an open EVD seemed to be associated with more effective ICP control in the management of adult severe TBI.


Assuntos
Lesões Encefálicas/líquido cefalorraquidiano , Drenagem/métodos , Pressão Intracraniana/fisiologia , Monitorização Fisiológica/métodos , Adulto , Lesões Encefálicas/cirurgia , Drenagem/instrumentação , Feminino , Escala de Coma de Glasgow , Humanos , Escala de Gravidade do Ferimento , Hipertensão Intracraniana/líquido cefalorraquidiano , Hipertensão Intracraniana/cirurgia , Masculino , Pessoa de Meia-Idade , Monitorização Fisiológica/instrumentação , Estudos Retrospectivos , Resultado do Tratamento
7.
Neurosurgery ; 94(2): 317-324, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-37747231

RESUMO

BACKGROUND AND OBJECTIVES: Several neurosurgical pathologies, ranging from glioblastoma to hemorrhagic stroke, use volume thresholds to guide treatment decisions. For chronic subdural hematoma (cSDH), with a risk of retreatment of 10%-30%, the relationship between preoperative and postoperative cSDH volume and retreatment is not well understood. We investigated the potential link between preoperative and postoperative cSDH volumes and retreatment. METHODS: We performed a retrospective chart review of patients operated for unilateral cSDH from 4 level 1 trauma centers, February 2009-August 2021. We used a 3-dimensional deep learning, automated segmentation pipeline to calculate preoperative and postoperative cSDH volumes. To identify volume thresholds, we constructed a receiver operating curve with preoperative and postoperative volumes to predict cSDH retreatment rates and selected the threshold with the highest Youden index. Then, we developed a light gradient boosting machine to predict the risk of cSDH recurrence. RESULTS: We identified 538 patients with unilateral cSDH, of whom 62 (12%) underwent surgical retreatment within 6 months of the index surgery. cSDH retreatment was associated with higher preoperative (122 vs 103 mL; P < .001) and postoperative (62 vs 35 mL; P < .001) volumes. Patients with >140 mL preoperative volume had nearly triple the risk of cSDH recurrence compared with those below 140 mL, while a postoperative volume >46 mL led to an increased risk for retreatment (22% vs 6%; P < .001). On multivariate modeling, our model had an area under the receiver operating curve of 0.76 (95% CI: 0.60-0.93) for predicting retreatment. The most important features were preoperative and postoperative volume, platelet count, and age. CONCLUSION: Larger preoperative and postoperative cSDH volumes increase the risk of retreatment. Volume thresholds may allow identification of patients at high risk of cSDH retreatment who would benefit from adjunct treatments. Machine learning algorithm can quickly provide accurate estimates of preoperative and postoperative volumes.


Assuntos
Hematoma Subdural Crônico , Humanos , Estudos Retrospectivos , Hematoma Subdural Crônico/diagnóstico por imagem , Hematoma Subdural Crônico/cirurgia , Hematoma Subdural Crônico/etiologia , Recidiva Local de Neoplasia/cirurgia , Procedimentos Neurocirúrgicos/efeitos adversos , Procedimentos Neurocirúrgicos/métodos , Retratamento , Recidiva , Drenagem/métodos
8.
Neurosurgery ; 92(1): 137-143, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36173200

RESUMO

BACKGROUND: The most extensively validated prognostic models for traumatic brain injury (TBI) are the Corticoid Randomization after Significant Head Injury (CRASH) and International Mission on Prognosis and Analysis of Clinical Trials (IMPACT). Model characteristics outside of area under the curve (AUC) are rarely reported. OBJECTIVE: To report the discriminative validity and overall model performance of the CRASH and IMPACT models for prognosticating death at 14 days (CRASH) and 6 months (IMPACT) and unfavorable outcomes at 6 months after TBI. METHODS: This retrospective cohort study included prospectively collected patients with severe TBI treated at a single level I trauma center (n = 467). CRASH and IMPACT percent risk values for the given outcome were computed. Unfavorable outcome was defined as a Glasgow Outcome Scale-Extended score of 1 to 4 at 6 months. Binary logistic regressions and receiver operating characteristic analyses were used to differentiate patients from the CRASH and IMPACT prognostic models. RESULTS: All models had low R 2 values (0.17-0.23) with AUC values from 0.77 to 0.81 and overall accuracies ranging from 72.4% to 78.3%. Sensitivity (35.3-50.0) and positive predictive values (66.7-69.2) were poor in the CRASH models, while specificity (52.3-53.1) and negative predictive values (58.1-63.6) were poor in IMPACT models. All models had unacceptable false positive rates (20.8%-33.3%). CONCLUSION: Our results were consistent with previous literature regarding discriminative validity (AUC = 0.77-0.81). However, accuracy and false positive rates of both the CRASH and IMPACT models were poor.


Assuntos
Lesões Encefálicas Traumáticas , Traumatismos Craniocerebrais , Humanos , Prognóstico , Estudos Retrospectivos , Lesões Encefálicas Traumáticas/diagnóstico , Escala de Resultado de Glasgow , Curva ROC
9.
Neurotrauma Rep ; 4(1): 118-123, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36895818

RESUMO

The Corticoid Randomization after Significant Head Injury (CRASH) and International Mission for Prognosis and Analysis of Clinical Trials (IMPACT) prognostic models are the most reported prognostic models for traumatic brain injury (TBI) in the scientific literature. However, these models were developed and validated to predict 6-month unfavorable outcome and mortality, and growing evidence supports continuous improvements in functional outcome after severe TBI up to 2 years post-injury. The purpose of this study was to evaluate CRASH and IMPACT model performance beyond 6 months post-injury to include 12 and 24 months post-injury. Discriminative validity remained consistent over time and comparable to earlier recovery time points (area under the curve = 0.77-0.83). Both models had poor fit for unfavorable outcomes, explaining less than one quarter of the variation in outcomes for severe TBI patients. The CRASH model had significant values for the Hosmer-Lemeshow test at 12 and 24 months, indicating poor model fit past the previous validation point. There is concern in the scientific literature that TBI prognostic models are being used by neurotrauma clinicians to support clinical decision making despite the goal of the models' development being to support research study design. The results of this study indicate that the CRASH and IMPACT models should not be used in routine clinical practice because of poor model fit that worsens over time and the large, unexplained variance in outcomes.

10.
Neurotrauma Rep ; 4(1): 184-196, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36974123

RESUMO

The elderly population are at high risk for developing chronic subdural hematoma (cSDH). Surgical evacuation of cSDH is one of the most common procedures performed in neurosurgery. The present study aims to identify potential inflammatory biomarkers associated with its development and recurrence. Patients (>65 years of age) who presented with symptomatic cSDH (≥1 cm thickness or ≥5 mm midline shift [MLS]), requiring surgical intervention, were prospectively enrolled. The collected cSDH fluid was analyzed for inflammatory markers. Computed tomography (CT) scan data included pre-operative cSDH thickness and MLS. Outcome data included Glasgow Outcome Scale-Extended (GOS-E) score at 3, 6, and 12 months post-surgery, as well as cSDH recurrence. A decision tree model was used to determine the predictive power of extracted analytes for MLS, cSDH thickness, and recurrence. This pilot study includes 20 enrolled patients (mean age 77.9 ± 7.4 years and 85% falls). Rate of cSDH recurrence was 42%, with 21% requiring reoperation. Chemokine (C-X-C motif) ligand 9 (CXCL9) concentrations correlated with cSDH thickness (r = 0.975, p = 0.040). Interleukin (IL)-6 and vascular endothelial growth factor (VEGF)-A concentrations correlated with MLS (r = 0.974, p = 0.005; r = 0.472, p = 0.036, respectively). IL-5 concentrations correlated with more favorable GOS-E scores at 3, 6, and 12 months (r = 0.639, p = 0.006; r = 0.727, p = 0.003; r = 0.693, p = 0.026, respectively). Regulated on activation, normal T-cell expressed and secreted (RANTES) concentrations correlated with complete cSDH resolution (r = 0.514, p = 0.021). The decision tree model identified that higher concentrations of CXCL9 were predictive of MLS (risk ratio [RR] = 12.0), higher concentrations of IL-5 were predictive of cSDH thickness (RR = 4.5), and lower concentrations of RANTES were predictive of cSDH recurrence (RR = 2.2). CXCL9, IL-6, VEGF, IL-5, and RANTES are associated with recurrence after surgery and may be potential biomarkers for predicting cSDH recurrence and neurological outcomes.

11.
J Neurosurg ; : 1-11, 2023 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-37976508

RESUMO

OBJECTIVE: Different paradigms for neurocritical care of traumatic brain injury (TBI) have emerged in conjunction with advanced neuromonitoring technologies and derived metrics. The priority for optimizing these metrics is not currently clear. The goal of this study was to determine whether achieving cerebral perfusion pressure (CPPopt) also improves other metrics like brain oxygenation and brain blood flow. METHODS: The authors performed a retrospective analysis of high-frequency data from patients with TBI who were treated at a single center and who had partial pressure of brain oxygen (PbtO2) measurements and/or brain blood flow measurements, while also undergoing intracranial pressure (ICP) monitoring. CPPopt was not calculated or targeted during patient care, but was retrospectively computed, as was the difference between the observed CPP and CPPopt. RESULTS: A total of 22 patients with ICP, PbtO2, and/or brain blood flow monitoring were included in the analysis, and 245.7 days of measurements obtained every second were analyzed including 6,748,866 PbtO2 measurements, 3,296,405 blood flow measurements, and 10,264,770 ICP measurements. The data obtained every second were averaged by minute for analysis. In summative data, PbtO2 measurements peaked near CPPopt and were not improved above CPPopt. Blood flow measurements remained stable near CPPopt, decreased below it, and increased when CPP exceeded CPPopt. ICP decreased linearly with CPP without a specific relationship with CPPopt. In an inverse analysis, the percentage of CPP values at CPPopt, although significantly higher on the favorable side of contemporary treatment thresholds of PbtO2, ICP, and blood flow, was not found to be strongly correlated with the mean values of the physiological measurements obtained every minute (r = 0.27, r = 0.11, and r = 0.47 for ICP, PbtO2, and blood flow, respectively; p < 0.0001). CONCLUSIONS: Although CPPopt was not targeted in the patients in this study, CPPopt was a physiologically significant value based on concurrent measurements of PbtO2 and blood flow. In summative data, achievement of CPPopt was associated with optimized PbtO2 and blood flow. Conversely, the correlation between achievement of CPPopt and the mean measurement value was not strong, strengthening the significance of CPPopt. In individual patients, achieving CPPopt is not always associated with optimal PbtO2 or blood flow. Further research should explore these relationships in treatment paradigms that specifically target CPPopt. These data do not support the premise that targeting and achieving CPPopt obviates the need for concurrent PbtO2 and blood flow monitoring. Although these data suggest that targeting CPPopt may be an appropriate initial treatment strategy, they do not provide evidence that CPPopt should be targeted with highest priority.

12.
J Neurotrauma ; 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37551972

RESUMO

Outcomes after severe traumatic brain injury (TBI) can be represented by a sliding score that compares actual functional recovery to that predicted by illness severity models. This approach has been applied in clinical trials because of its statistical efficiency and interpretability but has not been used to describe change in functional recovery over time. The objective of this study was to use a sliding scoring system to describe the magnitude of change in Glasgow Outcome Scale Extended (GOSE) score at 6, 12, and 24 months after severe TBI and to compare patients who improved after 6 months to those who did not. This study included consecutive severe TBI patients (Glasgow Coma Scale ≤8; n = 482) from a single center. We grouped patients into four strata based on probability of unfavorable outcome (GOSE = 1-4) using the International Mission on Prognosis and Analysis of Clinical Trials (IMPACT) model, selected a dichotomous GOSE threshold within each stratum, and compared each patient's GOSE to this threshold to calculate a score (GOSE-Sliding Scale [SS]) from -5 to +4 at 6, 12, and 24 months. We compared GOSE-SS at 6 months with GOSE-SS at 12 and 24 months and also compared characteristics of participants who improved after 6 months with characteristics of those who did not using χ2 and t tests. Compared with at 6 months, 40% of patients (n = 74) had improved GOSE-SS at 12 months, and 53% had improved GOSE-SS by 24 months (n = 72). Among those who improved at 12 months, the average magnitude of improvement was 1.7 ± 0.9 and among those who improved at 24 months, the average magnitude of improvement was 1.9 ± 1.0. Those who improved their GOSE-SS score from 6 to 24 months had longer hospital stays (mean-difference = 8.6 days; p = 0.03), longer intensive care unit (ICU) stays (mean-difference = 5.5 days; p = 0.02), and longer ventilator time (mean-difference = 5 days; p = 0.02) than those who worsened. These results support an optimistic long-term outlook for severe TBI patients and emphasize the importance of long-term follow-up in severe TBI survivors.

13.
Clin Neurol Neurosurg ; 224: 107545, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36584586

RESUMO

BACKGROUND: The prevalence of traumatic brain injury (TBI) continues to rise, in part as a reflection of a growing elderly population. Concomitantly, nihilism may exist following substantial neurotrauma from a myriad of commonplace mechanisms, such as traffic incidents, assaults, or falls. OBJECTIVE: This study assesses long-term outcomes following aggressive surgical intervention with invasive neuromonitoring to guard against nihilism, especially for patients with advantageous characteristics such as younger age. METHODS: A consecutive series of patients with severe TBI treated between 2008 and 2018 and enrolled into the Brain Trauma Research Center (BTRC) database, an Institutional Review Board (IRB 19030228) approved prospective, longitudinal cohort study, were extracted. Demographic and clinical data were analyzed. Long-term functional outcome was recorded with the eight-point Glasgow Outcome Scale-Extended (GOS-E) score at 3-, 6-, 12-, and 24-months by trained, qualified neuropsychology technicians. Chi-squared and analysis of variance tests were used to evaluate the relationship of age groups between different variables. RESULTS: For this analysis, 175 patients with severe TBI who were enrolled in the BTRC database and required decompressive hemicraniectomy during the study period were included. Over one-third of the patients with a severe TBI, who were aged 35 years and younger, had a favorable outcome. CONCLUSIONS: Despite enduring a severe TBI, a substantial percentage of younger patients achieved favorable outcomes following aggressive treatment. As such, establishing a prognosis should be deferred to allow for recovery via individualized rehabilitation, multidisciplinary support, and community reintegration programs to cope with various long-term psychological, cognitive, and functional disabilities.


Assuntos
Lesões Encefálicas Traumáticas , Lesões Encefálicas , Humanos , Idoso , Estudos Longitudinais , Lesões Encefálicas Traumáticas/cirurgia , Estudos de Coortes , Lesões Encefálicas/cirurgia , Sistema de Registros , Escala de Coma de Glasgow
14.
Diagnostics (Basel) ; 13(14)2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37510178

RESUMO

Invasive neuromonitoring is a bedrock procedure in neurosurgery and neurocritical care. Intracranial hypertension is a recognized emergency that can potentially lead to herniation, ischemia, and neurological decline. Over 50,000 external ventricular drains (EVDs) are performed in the United States annually for traumatic brain injuries (TBI), tumors, cerebrovascular hemorrhaging, and other causes. The technical challenge of a bedside ventriculostomy and/or parenchymal monitor placement may be increased by complex craniofacial trauma or brain swelling, which will decrease the tolerance of brain parenchyma to applied procedural force during a craniostomy. Herein, we report on the implementation and safety of a disposable power drill for bedside neurosurgical practices compared with the manual twist drill that is the current gold standard. Mechanical testing of the drill's stop extension (n = 8) was conducted through a calibrated tensile tester, simulating an axial plunging of 22.68 kilogram (kg) or 50 pounds of force (lbf) and measuring the strength-responsive displacement. The mean displacement following compression was 0.18 ± 0.11 mm (range of 0.03 mm to 0.34 mm). An overall cost analysis was calculated based on the annual institutional pricing, with an estimated $64.90 per unit increase in the cost of the disposable electric drill. Power drill craniostomies were utilized in a total of 34 adult patients, with a median Glasgow Coma Scale (GCS) score of six. Twenty-seven patients were male, with a mean age of 50.7 years old. The two most common injury mechanisms were falls and motor vehicle/motorcycle accidents. EVDs were placed in all subjects, and additional quad-lumen neuromonitoring was applied to 23 patients, with no incidents of plunging events or malfunctions. One patient developed an intracranial infection and another had intraparenchymal tract hemorrhaging. Two illustrative TBI cases with concomitant craniofacial trauma were provided. The disposable power drill was successfully implemented as an option for bedside ventriculostomies and had an acceptable safety profile.

15.
World Neurosurg ; 161: e109-e117, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35077890

RESUMO

BACKGROUND: Invasive neuromonitoring is a mainstay of modern management of severe traumatic brain injury (TBI). Complication rates of neuromonitor placement are widely reported, but their effects on long-term outcomes are less studied. We evaluated the association of neuromonitor complications on long-term outcomes in a prospective severe TBI cohort. METHODS: We reviewed 599 patients with severe TBI from November 2002 through 2018 for neuromonitor-associated hemorrhage and infection. We compared outcome differences between patients with and without neuromonitoring-associated complications using the Glasgow Outcomes Scale (GOS) at 3, 6, 12, and 24 months post trauma. When analyzing neuromonitoring infections, we removed all patients who expired before discharge as early mortality was associated with reduced infection rates. RESULTS: Neuromonitor-associated hemorrhage occurred in 62 out of 534 patients with post placement imaging (11.6%) and was increased in patinets who underwent a craniotomy (24% vs. 11%, P = 0.005). Clinical outcomes did not differ in patients with neuromonitor-associated hemorrhage. Neuromonitor-associated infection occurred in 30 of 389 patients (7.7%) who survived to discharge. Infection was associated with worse outcomes at 3 months (P = 0.03), where the proportion of patients with favorable outcomes (P = 0.02) was decreased despite similar mortality (P = 0.24). Patients with an infection recovered by 6 months, at which point there were no differences in total GOS or rates of favorable outcomes then or at later time points (P > 0.26). Neuromonitor-associated infection was associated with increased length of stay (P = 0.01) and depressed skull fractures (P = 0.03) but did not affect rates of shunting (P = 0.99). CONCLUSIONS: Complications of neuromonitoring in severe TBI are associated with delayed recovery but not long-term outcomes.


Assuntos
Lesões Encefálicas Traumáticas , Lesões Encefálicas , Lesões Encefálicas/complicações , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/cirurgia , Escala de Resultado de Glasgow , Humanos , Estudos Prospectivos
16.
Clin Neurol Neurosurg ; 212: 107069, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34844161

RESUMO

OBJECTIVE: Neurosurgical evacuation in elderly trauma patients is controversial. We analyzed impact of craniotomy for acute subdural hematoma on survival in octogenarians and nonagenarians. Methods The study population included all patients aged ≥ 80 years who presented with acute traumatic SDHs 09/01/15 - 01/01/20, with radiography indicating operative eligibility (i.e. MLS >5 mm and/or overall thickness >10 mm). Of 1054 TBIs aged ≥ 80 years, 104 (9.87%) were surgically indicated. Of these, 35 received craniotomy and 69 received supportive measures due to family/patient wishes or surgeon's professional decision. We analyzed these data using a Poisson regression adjusted for influence of covariates. RESULTS: Of 35 craniotomies, 21 (60.00%) were deceased at 2 years of follow-up, compared to 48 (69.57%) deceased of 69 non-surgical patients. No significant demographic differences existed between these groups, other than age (craniotomy patients were younger; median age 84 vs 86; p < 0.001). In outcomes, the craniotomy cohort survived longer and in higher proportions (p = 0.028; Gehan-Breslow-Wilcoxon). When adjusting for covariates, this effect became more pronounced: craniotomy patients died at 41.1% the rate of non-surgical ones. Of all the covariates, only initial GCS significantly impacted the protective effect of craniotomy. In a logarithmic relationship, each point on initial GCS was associated with less benefit from surgery. We also found that patients with GCS< 3 were overall less likely to benefit from surgery. Our conclusions are limited by the impact of patient/surgeon choice on whether or not to operate. It is possible healthier subjects elected for craniotomies. We have attempted to correct for this by including comorbidities as covariates in our regression analyses. CONCLUSIONS: Our results indicate a surgical benefit for this elderly cohort, consistent with prior findings of benefit in the setting of severe traumatic aSDH. Patients with worse neurologic impairment, i.e. low GCS, had the greatest survival benefit from surgical intervention.


Assuntos
Craniotomia , Hematoma Subdural Agudo/terapia , Avaliação de Processos e Resultados em Cuidados de Saúde , Idoso , Idoso de 80 Anos ou mais , Feminino , Seguimentos , Hematoma Subdural Agudo/cirurgia , Humanos , Masculino , Cuidados Paliativos
17.
Neurosurgery ; 91(4): 633-640, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35833650

RESUMO

BACKGROUND: The recovery of severe traumatic brain injury (TBI) survivors with long-term favorable outlook is understudied. Time to follow commands varies widely in this patient population but has important clinical implications. OBJECTIVE: To (1) evaluate time to follow commands in severe patients with TBI with favorable outcomes, (2) characterize their trajectory of recovery, and (3) identify predictors associated with delayed cognitive improvement. METHODS: Participants were recruited prospectively at a Level I trauma center through the Brain Trauma Research Center from 2003 to 2018. Inclusion criteria were age 16 to 80 years, Glasgow Coma Scale score ≤8 and motor score <6, and Glasgow Outcome Scale-Extended measure ≥4 at 2 years postinjury. RESULTS: In 580 patients, there were 229 (39.5%) deaths and 140 (24.1%) patients had favorable outcomes at 2 years. The mean age was 33.7 ± 14.5 years, median Glasgow Coma Scale was 7 (IQR 6-7), and median Injury Severity Score was 30 (IQR 26-38). The mean time to follow commands was 12.7 ± 11.8 days. On multivariable linear regression, the presence of diffuse axonal injury (B = 9.2 days [4.8, 13.7], P < .0001) or intraventricular hemorrhage (B = 6.4 days [0.5, 12.3], P < .035) was associated with longer time before following commands and patients who developed nosocomial infections (B = 6.5 days [1.6-11.4], P < .01). CONCLUSION: In severe TBI survivors with favorable outcomes, time to follow commands varied widely. Most patients began to follow commands within 2 weeks. Evidence of diffuse axonal injury, intraventricular hemorrhage, and infections can delay cognitive improvement in the acute period. Patients make considerable recovery up to 2 years after their injury.


Assuntos
Lesões Encefálicas Traumáticas , Lesão Axonal Difusa , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Lesões Encefálicas Traumáticas/complicações , Lesões Encefálicas Traumáticas/terapia , Hemorragia Cerebral/complicações , Lesão Axonal Difusa/complicações , Escala de Coma de Glasgow , Escala de Resultado de Glasgow , Humanos , Pessoa de Meia-Idade , Sobreviventes , Adulto Jovem
18.
Surg Neurol Int ; 12: 86, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33767890

RESUMO

BACKGROUND: Gamma Knife stereotactic radiosurgery (GKRS) facilitates precisely focused radiation to an intracranial target while minimizing substantial off-target radiation in the surrounding normal tissue. Meningiomas attached to or invading the superior sagittal sinus may result in sinus occlusion and are often impossible to completely resect safely. The authors describe successful management of a patient with a meningioma located completely inside the posterior aspect of the superior sagittal sinus. CASE DESCRIPTION: A 46-year-old woman presented to the emergency department with progressive generalized headaches accompanied by worsening vision. The patient underwent a diagnostic brain magnetic resonance imaging which showed a solitary a 7 × 6 × 10 mm homogeneously contrast-enhancing lesion within the lumen of the posterior aspect of superior sagittal sinus without ventricular enlargement or peritumoral edema. The lesion was thought to be a meningioma radiographically. To evaluate the suspected increased intracranial pressure, a lumbar puncture was subsequently performed and demonstrated an opening pressure of 30 cm H2O. After drainage of 40 cc of CSF, the spinal closing pressure was 9 cm H2O. After failure of conservative management with acetazolamide, and determination of surgical inoperability due to the critical intraluminal location of the mass lesion, the patient underwent Gamma Knife radiosurgery. The 0.36 cc tumor was treated as an outpatient in the Perfexion® model Gamma Knife with a highly conformal and selective plan that enclosed the 3D geometry of the tumor with a minimal margin tumor dose of 14 gy at the 50% isodose. Three months after GKRS, the patient reported continued reduction in the frequency and severity of both her headaches and her visual disturbance. Ophthalmological consultation noted progressive resolution of her optic disc edema confirmed by formal optical coherence tomography. The patient is now 3 years out from GKRS with complete resolution of headache symptoms along with persistent reduction in tumor size (3 × 1 × 4 mm) on serial period imaging and resolution of papilledema. CONCLUSION: Tumors located in such critical anatomic regions, as in our patient, should be considered for primary GKRS when the risks of biopsy or removal are too high. GKRS was able to provide great radiographic and clinical result in an intricately located meningioma.

19.
PLoS One ; 16(9): e0257784, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34582497

RESUMO

Drug repurposing has the potential to bring existing de-risked drugs for effective intervention in an ongoing pandemic-COVID-19 that has infected over 131 million, with 2.8 million people succumbing to the illness globally (as of April 04, 2021). We have used a novel `gene signature'-based drug repositioning strategy by applying widely accepted gene ranking algorithms to prioritize the FDA approved or under trial drugs. We mined publically available RNA sequencing (RNA-Seq) data using CLC Genomics Workbench 20 (QIAGEN) and identified 283 differentially expressed genes (FDR<0.05, log2FC>1) after a meta-analysis of three independent studies which were based on severe acute respiratory syndrome-related coronavirus 2 (SARS-CoV-2) infection in primary human airway epithelial cells. Ingenuity Pathway Analysis (IPA) revealed that SARS-CoV-2 activated key canonical pathways and gene networks that intricately regulate general anti-viral as well as specific inflammatory pathways. Drug database, extracted from the Metacore and IPA, identified 15 drug targets (with information on COVID-19 pathogenesis) with 46 existing drugs as potential-novel candidates for repurposing for COVID-19 treatment. We found 35 novel drugs that inhibit targets (ALPL, CXCL8, and IL6) already in clinical trials for COVID-19. Also, we found 6 existing drugs against 4 potential anti-COVID-19 targets (CCL20, CSF3, CXCL1, CXCL10) that might have novel anti-COVID-19 indications. Finally, these drug targets were computationally prioritized based on gene ranking algorithms, which revealed CXCL10 as the common and strongest candidate with 2 existing drugs. Furthermore, the list of 283 SARS-CoV-2-associated proteins could be valuable not only as anti-COVID-19 targets but also useful for COVID-19 biomarker development.


Assuntos
Tratamento Farmacológico da COVID-19 , Reposicionamento de Medicamentos/métodos , SARS-CoV-2/genética , Antivirais/uso terapêutico , Avaliação Pré-Clínica de Medicamentos/métodos , Células Epiteliais/efeitos dos fármacos , Epitélio/efeitos dos fármacos , Humanos , Mucosa Respiratória/efeitos dos fármacos , Mucosa Respiratória/metabolismo , Mucosa Respiratória/virologia , Sistema Respiratório/efeitos dos fármacos , SARS-CoV-2/efeitos dos fármacos , SARS-CoV-2/patogenicidade
20.
Neurol Int ; 13(4): 527-534, 2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34698266

RESUMO

The development of hydrocephalus after severe traumatic brain injury (TBI) is an under-recognized healthcare phenomenon and can increase morbidity. The current study aims to characterize post-traumatic hydrocephalus (PTH) in a large cohort. Patients were prospectively enrolled age 16-80 years old with Glasgow Coma Scale (GCS) score ≤8. Demographics, GCS, Injury Severity Score (ISS), surgery, and cerebrospinal fluid (CSF) were analyzed. Outcomes were shunt failure and Glasgow Outcome Scale (GOS) at 6 and 12-months. Statistical significance was assessed at p < 0.05. In 402 patients, mean age was 38.0 ± 16.7 years and 315 (78.4%) were male. Forty (10.0%) patients developed PTH, with predominant injuries being subdural hemorrhage (36.4%) and diffuse axonal injury (36.4%). Decompressive hemicraniectomy (DHC) was associated with hydrocephalus (OR 3.62, 95% CI (1.62-8.07), p < 0.01). Eighteen (4.5%) patients had shunt failure and proximal obstruction was most common. Differences in baseline CSF cell count were associated with increased shunt failure. PTH was not associated with worse outcomes at 6 (p = 0.55) or 12 (p = 0.47) months. Hydrocephalus is a frequent sequela in 10.0% of patients, particularly after DHC. Shunt placement and revision procedures are common after severe TBI, within the first 4 months of injury and necessitates early recognition by the clinician.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA