Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Biol Chem ; 299(12): 105382, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37866628

RESUMO

Proteomic studies have identified moesin (MSN), a protein containing a four-point-one, ezrin, radixin, moesin (FERM) domain, and the receptor CD44 as hub proteins found within a coexpression module strongly linked to Alzheimer's disease (AD) traits and microglia. These proteins are more abundant in Alzheimer's patient brains, and their levels are positively correlated with cognitive decline, amyloid plaque deposition, and neurofibrillary tangle burden. The MSN FERM domain interacts with the phospholipid phosphatidylinositol 4,5-bisphosphate (PIP2) and the cytoplasmic tail of CD44. Inhibiting the MSN-CD44 interaction may help limit AD-associated neuronal damage. Here, we investigated the feasibility of developing inhibitors that target this protein-protein interaction. We have employed structural, mutational, and phage-display studies to examine how CD44 binds to the FERM domain of MSN. Interestingly, we have identified an allosteric site located close to the PIP2 binding pocket that influences CD44 binding. These findings suggest a mechanism in which PIP2 binding to the FERM domain stimulates CD44 binding through an allosteric effect, leading to the formation of a neighboring pocket capable of accommodating a receptor tail. Furthermore, high-throughput screening of a chemical library identified two compounds that disrupt the MSN-CD44 interaction. One compound series was further optimized for biochemical activity, specificity, and solubility. Our results suggest that the FERM domain holds potential as a drug development target. Small molecule preliminary leads generated from this study could serve as a foundation for additional medicinal chemistry efforts with the goal of controlling microglial activity in AD by modifying the MSN-CD44 interaction.


Assuntos
Doença de Alzheimer , Ligação Proteica , Humanos , Doença de Alzheimer/tratamento farmacológico , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Domínios FERM , Receptores de Hialuronatos/metabolismo , Ligação Proteica/efeitos dos fármacos , Proteômica
2.
Biochemistry ; 58(33): 3527-3536, 2019 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-31386347

RESUMO

CPAF (chlamydial protease-like activity factor) is a Chlamydia trachomatis protease that is translocated into the host cytosol during infection. CPAF activity results in dampened host inflammation signaling, cytoskeletal remodeling, and suppressed neutrophil activation. Although CPAF is an emerging antivirulence target, its catalytic mechanism has been unexplored to date. Steady state kinetic parameters were obtained for recombinant CPAF with vimentin-derived peptide substrates using a high-performance liquid chromatography-based discontinuous assay (kcat = 45 ± 0.6 s-1; kcat/Km = 0.37 ± 0.02 µM-1 s-1) or a new fluorescence-based continuous assay (kcat = 23 ± 0.7 s-1; kcat/Km = 0.29 ± 0.03 µM-1 s-1). Residues H105, S499, E558, and newly identified D103 were found to be indispensable for autoproteolytic processing by mutagenesis, while participation of C500 was ruled out despite its proximity to the S499 nucleophile. Pre-steady state kinetics indicated a burst kinetic profile, with fast acylation (kacyl = 110 ± 2 s-1) followed by slower, partially rate-limiting deacylation (kdeacyl = 57 ± 1 s-1). Both kcat- and kcat/Km-pH profiles showed single acidic limb ionizations with pKa values of 6.2 ± 0.1 and 6.5 ± 0.1, respectively. A forward solvent deuterium kinetic isotope effect of 2.6 ± 0.1 was observed for D2Okcatapp, but a unity effect was found for D2Okcat/Kmapp. The kcat proton inventory was linear, indicating transfer of a single proton in the rate-determining transition state, most likely from H105. Collectively, these data provide support for the classification of CPAF as a serine protease and provide a mechanistic foundation for the future design of inhibitors.


Assuntos
Chlamydia trachomatis/enzimologia , Endopeptidases/metabolismo , Serina Proteases/metabolismo , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Cinética , Proteólise , Fatores de Virulência
3.
bioRxiv ; 2023 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-37292860

RESUMO

Recent genome-wide association studies have revealed genetic risk factors for Alzheimer's disease (AD) that are exclusively expressed in microglia within the brain. A proteomics approach identified moesin (MSN), a FERM (four-point-one ezrin radixin moesin) domain protein, and the receptor CD44 as hub proteins found within a co-expression module strongly linked to AD clinical and pathological traits as well as microglia. The FERM domain of MSN interacts with the phospholipid PIP2 and the cytoplasmic tails of receptors such as CD44. This study explored the feasibility of developing protein-protein interaction inhibitors that target the MSN-CD44 interaction. Structural and mutational analyses revealed that the FERM domain of MSN binds to CD44 by incorporating a beta strand within the F3 lobe. Phage-display studies identified an allosteric site located close to the PIP2 binding site in the FERM domain that affects CD44 binding within the F3 lobe. These findings support a model in which PIP2 binding to the FERM domain stimulates receptor tail binding through an allosteric mechanism that causes the F3 lobe to adopt an open conformation permissive for binding. High-throughput screening of a chemical library identified two compounds that disrupt the MSN-CD44 interaction, and one compound series was further optimized for biochemical activity, specificity, and solubility. The results suggest that the FERM domain holds potential as a drug development target. The small molecule preliminary leads generated from the study could serve as a foundation for additional medicinal chemistry effort with the goal of controlling microglial activity in AD by modifying the MSN-CD44 interaction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA