Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Pharmaceutics ; 14(2)2022 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-35214010

RESUMO

In this study, we report a biohybrid oriented fibrous scaffold based on nanofibers of poly(l-lactic acid) (PLLA)/fibrin produced by electrospinning and subsequent post-treatment. Induced hydrolytic degradation of the fibers in 0.25 M NaOH solution for various time periods followed by the immobilization of fibrin on the hydrolyzed fiber surfaces was shown to significantly affect the mechanical properties, with the tensile strength (40.6 MPa ± 1.3) and strain at failure (38% ± 4.5) attaining a value within the range of human ligaments and ligament-replacement grafts. Unidirectional electrospinning with a mandrel rotational velocity of 26.4 m/s produced highly aligned fibers with an average diameter of 760 ± 96 nm. After a 20-min hydrolysis treatment in NaOH solution, this was further reduced to an average of 457 ± 89 nm, which is within the range of collagen bundles found in ligament tissue. Based on the results presented herein, the authors hypothesize that a combination of fiber orientation/alignment and immobilization of fibrin can result in the mechanical and morphological modification of PLLA tissue scaffolds for ligament-replacement grafts. Further, it was found that treatment with NaOH enhanced the osteogenic differentiation of hMSCs and the additional inclusion of fibrin further enhanced osteogenic differentiation, as demonstrated by decreased proliferative rates and increased ALP activity.

2.
Nanomaterials (Basel) ; 9(8)2019 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-31357440

RESUMO

Inflammation, as induced by the presence of cytokines and chemokines, is an integral part of chlamydial infections. The anti-inflammatory cytokine, interleukin (IL)-10, has been reported to efficiently suppress the secretion of inflammatory cytokines triggered by Chlamydia in mouse macrophages. Though IL-10 is employed in clinical applications, its therapeutic usage is limited due to its short half-life. Here, we document the successful encapsulation of IL-10 within the biodegradable polymeric nanoparticles of PLA-PEG (Poly (lactic acid)-Poly (ethylene glycol), to prolong its half-life. Our results show the encapsulated-IL-10 size (~238 nm), zeta potential (-14.2 mV), polydispersity index (0.256), encapsulation efficiency (~77%), and a prolonged slow release pattern up to 60 days. Temperature stability of encapsulated-IL-10 was favorable, demonstrating a heat capacity of up to 89 °C as shown by differential scanning calorimetry analysis. Encapsulated-IL-10 modulated the release of IL-6 and IL-12p40 in stimulated macrophages in a time- and concentration-dependent fashion, and differentially induced SOCS1 and SOCS3 as induced by chlamydial stimulants in macrophages. Our finding offers the tremendous potential for encapsulated-IL-10 not only for chlamydial inflammatory diseases but also biomedical therapeutic applications.

3.
Front Biosci (Elite Ed) ; 9(2): 192-203, 2017 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-28199184

RESUMO

In bone tissue engineering, the organo-ceramic composite, electrospun polycaprolactone/hydroxyapatite (PCL/HA) scaffold has the potential to support cell proliferation, migration, differentiation, and homeostasis. Here, we report the effect of PCL/HA scaffold in tissue regeneration using human mesenchymal stem cells (hMSCs). We characterized the scaffold by fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), scanning electron microscope (SEM) and assessed its biocompatibility. PCL/HA composite is superior as a scaffold compared to PCL alone. Furthermore, increasing HA content (5-10%) was more efficacious in supporting cell-scaffold attachment, expression of ECM molecules and proliferation. These results suggest that PCL/HA is useful as a scaffold for tissue regeneration.


Assuntos
Materiais Biomiméticos , Osso e Ossos/citologia , Engenharia Tecidual/métodos , Alicerces Teciduais , Regeneração Óssea , Varredura Diferencial de Calorimetria , Durapatita , Matriz Extracelular , Humanos , Células-Tronco Mesenquimais/citologia , Microscopia Eletrônica de Varredura , Poliésteres , Espectroscopia de Infravermelho com Transformada de Fourier
4.
Nanomaterials (Basel) ; 7(7)2017 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-28671603

RESUMO

Interleukin-10 (IL-10) is a key anti-inflammatory and immunosuppressive cytokine and therefore represents a potential therapeutic agent especially in inflammatory diseases. However, despite its proven therapeutic efficacy, its short half-life and proteolytic degradation in vivo combined with its low storage stability have limited its therapeutic use. Strategies have been developed to overcome most of these shortcomings, including in particular bioconjugation with stabilizing agents such as polyethylene glycol (PEG) and poly (vinylpyrolidone) (PVP), but so far these have had limited success. In this paper, we present an alternative method consisting of bioconjugating IL-10 to PVP-coated silver nanoparticles (Ag-PVPs) in order to achieve its storage stability by preventing denaturation and to improve its anti-inflammatory efficacy. Silver nanoparticles capped with a carboxylated PVP were produced and further covalently conjugated with IL-10 protein by carbodiimide crosslinker chemistry. The IL-10 conjugated Ag-PVPs exhibited increased stability and anti-inflammatory effectiveness in vitro. This study therefore provides a novel approach to bioconjugating PVP-coated silver nanoparticles with therapeutic proteins, which could be useful in drug delivery and anti-inflammatory therapies.

5.
J Nanosci Nanotechnol ; 6(2): 487-93, 2006 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-16573049

RESUMO

Nanocomposite scaffolds based on nanofibrous poly(epsilon-caprolactone) (PCL) and nanohydroxyapatite (nanoHA) with different compositions (wt%) were prepared by electrostatic co-spinning to mimic the nano-features of the natural extracellular matrix (ECM). NanoHA was found to be well dispersed in polymers up to the addition of 20 wt%, after ultrasonication. The composite scaffolds were characterized for structure and morphology using XRD, EDX, SEM, and DSC. The scaffolds have a porous nanofibrous morphology with fibers (majority) having diameters in the range of 450-650 nm, depending on composition, and interconnected pore structures. SEM, EDX, and XRD analyses have confirmed the presence of nanoHA in the fibers. As the nanoHA content in the fibers increases, the surface of fibers becomes rougher. The mechanical (tensile) property measurement of the electrospun composites reveals that as the nanoHA content increases, the ultimate strength increases from 1.68 MPa for pure PCL to 2.17, 2.65, 3.91, and 5.49 MPa for PCL/nanoHA composites with the addition of 5, 10, 15, and 20 wt% nanoHA, respectively. Similarly the tensile modulus also increases gradually from 6.12 MPa to 21.05 MPa with the increase of nanoHA content in the PCL/nanoHA fibers, revealing an increase in stiffness of the fibers due to the presence of HA. DSC analysis reveals that as nanoHA in the composite scaffolds increases, the melting point slightly increases due to the good dispersion and interface bonding between PCL and nanoHA.


Assuntos
Osso e Ossos , Durapatita/química , Nanotecnologia , Poliésteres/química , Engenharia Tecidual , Materiais Biocompatíveis , Varredura Diferencial de Calorimetria , Microscopia Eletrônica de Varredura , Difração de Raios X
6.
Acta Biomater ; 7(5): 2070-9, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21232639

RESUMO

Electrospinning has garnered special attention recently due to its flexibility in producing extracellular matrix-like non-woven fibers on the nano-/microscale and its ability to easily fabricate seamless three-dimensional tubular conduits. Biosyn(®), a bioabsorbable co-polymer of glycolide, dioxanone, and trimethylene carbonate, was successfully electrospun into tubular conduits for the first time for soft tissue applications. At an electric field strength of 1 kV cm(-1) over a distance of 22 cm (between the Taylor cone and the collector) and at a flow rate of 1.5 ml h(-1) different concentrations of Biosyn/HFP solutions (5-20%) were spun into nanofibers and collected on a rotating mandrel (diameter 4 mm) at 300 and 3125 r.p.m. Scaffolds were characterized for structural and morphological properties by differential scanning calorimetry and scanning electron microscopy and for mechanical properties by uniaxial tensile testing (in both the circumferential and longitudinal directions). Biosyn(®) tubular scaffolds (internal diameter 4 mm) have been shown to exhibit a highly porous structure (60-70%) with a randomly oriented nanofibrous morphology. The polymer solution concentration directly affects spinnability and fiber diameter. At very low concentrations (≤5%) droplets were formed due to electrospraying. However, as the concentration increased the solution viscosity increased and a "bead-on-string" morphology was observed at 10%. A further increase in concentration to 13% resulted in "bead-free" nanofibers with diameters in the range 500-700 nm. Higher concentrations (≥20%) resulted in the formation of microfibers (1-1.4 µm diameter) due to increased solution viscosity. It has also been noted that increasing the mandrel speed from 300 to 3125 r.p.m. produced a reduction in the fiber size. Uniaxial tensile testing of the scaffolds revealed the mechanical properties to be attractive for soft tissue applications. As the fiber diameters of the scaffold decrease the tensile strength and modulus increase. There is no drastic change in tensile properties of the scaffolds tested under hydrated and dry conditions. However, a detailed study on the biodegradation and biomechanics of electrospun Biosyn conduits under physiological pressure conditions is required to ensure potential application as a vascular graft.


Assuntos
Teste de Materiais/métodos , Fenômenos Mecânicos , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Varredura Diferencial de Calorimetria , Proliferação de Células , Células Cultivadas , Células Endoteliais/citologia , Humanos , Nanofibras/ultraestrutura , Porosidade , Pressão , Soluções , Resistência à Tração , Viscosidade
7.
Macromol Biosci ; 10(4): 433-44, 2010 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-20112236

RESUMO

The ability to mimic the chemical, physical and mechanical properties of the natural extra-cellular matrix is a key requirement for tissue engineering scaffolds to be successful. In this study, we successfully fabricated aligned nanofibrous multi-component scaffolds for bone tissue engineering using electrospinning. The chemical features were mimicked by using the natural components of bone: collagen and nano-hydroxyapatite along with poly[(D,L-lactide)-co-glycolide] as the major component. Anisotropic features were mimicked by aligning the nanofibers using a rotating mandrel collector. We evaluated the effect of incorporation of nano-HA particles to the system. The morphology and mechanical properties revealed that,at low concentrations, nano-HA acted as a reinforcement. However, at higher nano-HA loadings, it was difficult to disrupt aggregations and, hence, a detrimental effect was observed on the overall scaffold properties. Thermal analysis showed that there were slight interactions between the individual components even though the polymers existed as a two-phase system. Preliminary in vitro cell-culture studies revealed that the scaffold supported cell adhesion and spreading. The cells assumed a highly aligned morphology along the direction of fiber orientation. Protein adsorption experiments revealed that the synergistic effect of increased surface area and the presence of nano-HA in the polymer matrix enhanced total protein adsorption. Crosslinking with 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride resulted in improved mechanical properties of the scaffolds and improved degradation stability, under physiological conditions.


Assuntos
Materiais Biocompatíveis/química , Materiais Biocompatíveis/metabolismo , Regeneração Óssea , Nanocompostos/química , Nanofibras/química , Engenharia Tecidual/métodos , Alicerces Teciduais/química , Soluções Tampão , Varredura Diferencial de Calorimetria , Adesão Celular , Proliferação de Células , Colágeno/química , Durapatita/química , Etildimetilaminopropil Carbodi-Imida/química , Fibronectinas/metabolismo , Humanos , Ácido Láctico/química , Células-Tronco Mesenquimais/citologia , Microscopia Eletrônica de Varredura , Nanocompostos/ultraestrutura , Nanofibras/ultraestrutura , Ácido Poliglicólico/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Soro/metabolismo , Espectroscopia de Infravermelho com Transformada de Fourier , Resistência à Tração , Tripsina/metabolismo , Vitronectina/metabolismo
8.
Acta Biomater ; 5(1): 305-15, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18778977

RESUMO

Aligned nanofibrous scaffolds based on poly(d,l-lactide-co-glycolide) (PLGA) and nano-hydroxyapatite (nano-HA) were synthesized by electrospinning for bone tissue engineering. Morphological characterization using scanning electron microscopy showed that the addition of different amounts of nano-HA (1, 5, 10 and 20wt.%) increased the average fiber diameter from 300nm (neat PLGA) to 700nm (20% nano-HA). At higher concentrations (>or=10%), agglomeration of HA was observed and this had a marked effect at 20% concentration whereby the presence of nano-HA resulted in fiber breaking. Thermal characterization showed that the fast processing of electrospinning locked in the amorphous character of PLGA; this resulted in a decrease in the glass transition temperature of the scaffolds. Furthermore, an increase in the glass transition temperature was observed with increasing nano-HA concentration. The dynamic mechanical behavior of the scaffolds reflected the morphological observation, whereby nano-HA acted as reinforcements at lower concentrations (1% and 5%) but acted as defects at higher concentrations (10% and 20%). The storage modulus value of the scaffolds increased from 441MPa for neat PLGA to 724MPa for 5% nano-HA; however, further increasing the concentration leads to a decrease in storage modulus, to 371MPa for 20% nano-HA. Degradation characteristics showed that hydrophilic nano-HA influenced phosphate-buffered saline uptake and mass loss. The mechanical behavior showed a sinusoidal trend with a slight decrease in modulus by week 1 due to the plasticizing effect of the medium followed by an increase due to shrinkage, and a subsequent drop by week 6 due to degradation.


Assuntos
Materiais Biocompatíveis/química , Substitutos Ósseos/química , Durapatita/química , Ácido Láctico/química , Nanocompostos/química , Ácido Poliglicólico/química , Engenharia Tecidual/métodos , Varredura Diferencial de Calorimetria/métodos , Eletroquímica/métodos , Fosfatos/química , Copolímero de Ácido Poliláctico e Ácido Poliglicólico , Porosidade , Pressão , Espectrofotometria Infravermelho/métodos , Espectroscopia de Infravermelho com Transformada de Fourier , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA