Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 154
Filtrar
1.
Anal Chem ; 96(26): 10612-10619, 2024 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-38888104

RESUMO

The growing interest in lignin valorization in the past decades calls for analytical techniques for lignin characterization, ranging from wet chemistry techniques to highly sophisticated chromatographic and spectroscopic methods. One of the key parameters to consider is the molecular weight profile of lignin, which is routinely determined by size-exclusion chromatography; however, this is by no means straightforward and is prone to being hampered by considerable errors. Our study expands the fundamental understanding of the bias-inducing mechanisms in gel permeation chromatography (GPC), the magnitude of error originating from using polystyrene standards for mass calibration, and an evaluation of the effects of the solvent and type of lignin on the observed bias. The developed partial least-squares (PLS) regression model for lignin-related monomers revealed that lignin is prone to association mainly via hydrogen bonding. This hypothesis was supported by functional group-based analysis of the bias as well as pulse field gradient (pfg) diffusion NMR spectroscopy of model compounds in THF-d8. Furthermore, although the lack of standards hindered drawing conclusions based on functionalities, direct infusion electrospray ionization mass spectrometry indicated that the relative bias decreases considerably for higher molecular weight species. The results from pfg-diffusion NMR spectroscopy on whole lignin samples were comparable when the same solvents were used in both experiments; in addition, the comparison between results obtained by pfg-diffusion NMR in different solvents gives some additional insights into the aggregation.

2.
Anal Chem ; 95(41): 15286-15292, 2023 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-37782503

RESUMO

The use of a quartz crystal microbalance with dissipation (QCM-D) to study the adsorption of particles larger than 100 nm, such as liposomes, viruses, and nano/micro-plastics, remains challenging owing to the lack of appropriate models for data evaluation. This study presents a method for quantifying the adsorption of negatively charged polystyrene latex (100 nm-1 µm) at the solid-liquid interface. The validity of a viscoelastic model based on Kelvin-Voigt theory was assessed, and the model was used to evaluate particle adsorption data obtained from QCM-D measurements. The Gauss-Newton method was used to fit the data; the values obtained were larger than results from atomic force microscopy, indicating that the viscoelastic model combined with the Gauss-Newton method can quantify the adsorption of large polystyrene particles and the surrounding water around them. We suggested that QCM-D, in combination with an appropriate viscoelastic model, is applicable to estimate adsorption at the solid-liquid interface even for soft particles larger than 1 µm, which are out of the range of applications to the hydrodynamics model. Furthermore, we successfully showed that the recorded dissipation reflects the viscoelastic properties of the layer. The viscoelastic model allowed quantification of the rheological properties of the layer. The ratio of the viscous and elastic contributions was characterized by using loss tangent (tan δ) values that were extracted from the experimental data by applying the viscoelastic model. These values were lower for the adsorption of the negatively charged polystyrene particles on a positive surface than on a negative surface. This suggests that tan δ reflects the strength of the contact between the particle and substrate.

3.
Anal Chem ; 95(2): 1436-1445, 2023 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-36548212

RESUMO

The increased interest in utilizing lignin as a feedstock to produce various aromatic compounds requires advanced chemical analysis methods to provide qualitative and quantitative characterization of lignin samples along different technology streamlines. However, due to the lack of commercially available chemical standards, routine quantification of industrially relevant lignin oligomers in complex lignin samples remains a challenge. This study presents a novel method for universal quantification of lignin dimers based on supercritical fluid chromatography with charged aerosol detection (CAD). A series of lignin-derived dimeric compounds that have been reported from reductive catalytic fractionation (RCF) were synthesized and used as standards. The applicability of using linear regression instead of quadratic calibration curves was evaluated over a concentration range of 15-125 mg/L, demonstrating that the former calibration method is as appropriate as the latter. The response factors of lignin dimeric compounds were compared to assess the uniformity of the CAD signal, revealing that the CAD response for the tested lignin dimers did not differ substantially. It was also found that the response factors were not dependent on the number of methoxy groups or linkage motifs, ultimately enabling the use of only one calibrant for these compounds. The importance of chromatographic peak resolution in CAD was stressed, and the use of a digital peak sharpening technique was adopted and applied to address this challenge. The developed method was verified and used for the quantification of lignin dimers in an oil obtained by a RCF of birch sawdust.


Assuntos
Cromatografia com Fluido Supercrítico , Lignina , Lignina/análise , Polímeros/análise , Cromatografia Líquida de Alta Pressão , Aerossóis/análise
4.
Langmuir ; 38(33): 10075-10080, 2022 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-35914231

RESUMO

The molecular architecture of sugar-based surfactants strongly affects their self-assembled structure, i.e., the type of micelles they form, which in turn controls both the dynamics and rheological properties of the system. Here, we report the segmental and mesoscopic structure and dynamics of a series of C16 maltosides with differences in the anomeric configuration and degree of tail unsaturation. Neutron spin-echo measurements showed that the segmental dynamics can be modeled as a one-dimensional array of segments where the dynamics increase with inefficient monomer packing. The network dynamics as characterized by dynamic light scattering show different relaxation modes that can be associated with the micelle structure. Hindered dynamics are observed for arrested networks of worm-like micelles, connected to their shear-thinning rheology, while nonentangled diffusing rods relate to Newtonian rheological behavior. While the design of novel surfactants with controlled properties poses a challenge for synthetic chemistry, we demonstrate how simple variations in the monomer structure can significantly influence the behavior of surfactants.

5.
Phys Chem Chem Phys ; 24(5): 2762-2776, 2022 Feb 02.
Artigo em Inglês | MEDLINE | ID: mdl-34647947

RESUMO

The bioactivity, biological fate and cytotoxicity of nanomaterials when they come into contact with living organisms are determined by their interaction with biomacromolecules and biological barriers. In this context, the role of symmetry/shape anisotropy of both the nanomaterials and biological interfaces in their mutual interaction, is a relatively unaddressed issue. Here, we study the interaction of gold nanoparticles (NPs) of different shapes (nanospheres and nanorods) with biomimetic membranes of different morphology, i.e. flat membranes (2D symmetry, representative of the most common plasma membrane geometry), and cubic membranes (3D symmetry, representative of non-lamellar membranes, found in Nature under certain biological conditions). For this purpose we used an ensemble of complementary structural techniques, including Neutron Reflectometry, Grazing Incidence Small-Angle Neutron Scattering, on a nanometer lengthscale and Confocal Laser Scanning Microscopy on a micrometer length scale. We found that the structural stability of the membrane towards NPs is dependent on the topological characteristic of the lipid assembly and of the NPs, where a higher symmetry gave higher stability. In addition, Confocal Laser Scanning Microscopy analyses highlighted that NPs interact with cubic and lamellar phases according to two distinct mechanisms, related to the different structures of the lipid assemblies. This study for the first time systematically addresses the role of NPs shape in the interaction with lipid assemblies with different symmetry. The results will contribute to improve the fundamental knowledge on lipid interfaces and will provide new insights on the biological function of phase transitions as a response strategy to the exposure of NPs.


Assuntos
Ouro , Nanopartículas Metálicas , Anisotropia , Lipídeos , Espalhamento a Baixo Ângulo
6.
Biomacromolecules ; 22(6): 2338-2351, 2021 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-33961400

RESUMO

We present here a series of thermoresponsive glycopolymers in the form of poly(N-isopropylacrylamide)-co-(2-[ß-manno[oligo]syloxy] ethyl methacrylate)s. These copolymers were prepared from oligo-ß-mannosyl ethyl methacrylates that were synthesized through enzymatic catalysis, and were subsequently investigated with respect to their aggregation and phase behavior in aqueous solution using a combination of 1H NMR spectroscopy, dynamic light scattering, cryogenic transmission electron microscopy (TEM), and small-angle X-ray scattering (SAXS). The thermoresponsive glycopolymers were prepared by conventional free radical copolymerization of different mixtures of 2-(ß-manno[oligo]syloxy)ethyl methacrylates (with either one or two saccharide units) and N-isopropylacrylamide (NIPAm). The results showed that below the lower critical solution temperature (LCST) of poly(NIPAm), the glycopolymers readily aggregate into nanoscale structures, partly due to the presence of the saccharide moieties. Above the LCST of poly(NIPAm), the glycopolymers rearrange into a heterogeneous mixture of fractal and disc/globular aggregates. Cryo-TEM and SAXS data demonstrated that the presence of the pendant ß-mannosyl moieties in the glycopolymers induces a gradual conformational change over a wide temperature range. Even though the onset of this transition is not different from the LCST of poly(NIPAm), the gradual conformational change offers a variation of the temperature-dependent properties in comparison to poly(NIPAm), which displays a sharp coil-to-globule transition. Importantly, the compacted form of the glycopolymers shows a larger colloidal stability compared to the unmodified poly(NIPAm). In addition, the thermoresponsiveness can be conveniently tuned by varying the sugar unit-length and the oligo-ß-mannosyl ethyl methacrylate content.


Assuntos
Acrilamidas , Metacrilatos , Espalhamento a Baixo Ângulo , Temperatura , Difração de Raios X
7.
Soft Matter ; 16(30): 7063-7076, 2020 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-32756673

RESUMO

The substantial part of the water-soluble hemicellulose fraction, obtained when processing cellulose to produce paper and other products, has so far been discarded. The aim of this work is to reveal the interfacial properties of softwood hemicellulose (galactoglucomannan, GGM) in relation to their molecular and solution structure. In this study the sugar composition of GGM was characterised by chemical analysis as well as 1D and 2D NMR spectroscopy. Previously it has been demonstrated that hemicellulose has high affinity towards cellulose and has the ability to alter the properties of cellulose based products. This study is focused on the interactions between hemicellulose and the cellulose surface. Therefore, adsorption to hydrophobized silica and cellulose surfaces of two softwood hemicellulose samples and structurally similar seed hemicelluloses (galactomannans, GMs) was studied with ellipsometry, QCM-D and neutron reflectometry. Aqueous solutions of all samples were characterized with light scattering to determine how the degree of side-group substitution and molecular weight affect the conformation and aggregation of these polymers in the bulk. In addition, hemicellulose samples were studied with SAXS to investigate backbone flexibility. Light scattering results indicated that GM polymers form globular particles while GGMs were found to form rod-like aggregates in the solution. The polysaccharides exhibit higher adsorption to cellulose than on hydrophobic surfaces. A clear correlation between the increase in molecular weight of polysaccharides and increasing adsorbed amount on cellulose was observed, while the adsorbed amount on the hydrophobic surface was fairly independent of the molecular weight. The obtained layer thickness was compared with bulk scattering data and the results indicated flat conformation of the polysaccharides on the surface.

8.
J Dairy Sci ; 103(11): 9893-9905, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32952031

RESUMO

Increasing dietary calcium has been suggested to have a range of health benefits, such as reducing the risk of osteoporosis and hypertension. However, producing calcium-fortified products is challenging due to the destabilizing effect caused by added calcium. We provide new data on the effect of adding either calcium gluconate or calcium lactate at up to 50 mM on the partition of salts and the structure and solubility of micellar calcium phosphate (MCP). The empirical chemical formula of the MCP in milk with added calcium was Ca(HPO4)0.6(PO4)0.267, similar to that previously reported for the MCP in native bovine casein micelles. Ion equilibria calculations showed that the solubility of the MCP was decreased as measured by an increase in negative logarithm of the solubility constant (pKS) from 6.8 to 7.3 ± 0.1 and 7.5 ± 0.1 for milk with added calcium gluconate and calcium lactate, respectively. No substantial change in the amorphous structure of the MCP was observed by either X-ray powder diffraction or infrared spectroscopy of dried casein micelles as a result of added calcium. The conclusion is that the added calcium caused an increase in the concentration of the MCP and decreased its solubility without changing its amorphous structure or chemical composition.


Assuntos
Fosfatos de Cálcio/química , Cálcio/química , Leite/química , Animais , Caseínas/química , Bovinos , Concentração de Íons de Hidrogênio , Micelas , Sais/química , Cloreto de Sódio/química , Solubilidade , Difração de Raios X
9.
Biophys J ; 117(5): 829-843, 2019 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-31422820

RESUMO

Encapsulation of proteins within lipid inverse bicontinuous cubic phases (Q2) has been widely studied for many applications, such as protein crystallization or drug delivery of proteins for food and pharmaceutical purposes. However, the use of the lipid sponge (L3) phase for encapsulation of proteins has not yet been well explored. Here, we have employed a lipid system that forms highly swollen sponge phases to entrap aspartic protease (34 kDa), an enzyme used for food processing, e.g., to control the cheese-ripening process. Small-angle x-ray scattering showed that although the L3 phase was maintained at low enzyme concentrations (≤15 mg/mL), higher concentration induces a transition to more curved structures, i.e., transition from L3 to inverse bicontinuous cubic (Q2) phase. The Raman spectroscopy data showed minor conformational changes assigned to the lipid molecules that confirm the lipid-protein interactions. However, the peaks assigned to the protein showed that the structure was not significantly affected. This was consistent with the higher activity presented by the encapsulated aspartic protease compared to the free enzyme stored at the same temperature. Finally, the encapsulation efficiency of aspartic protease in lipid sponge-like nanoparticles was 81% as examined by size-exclusion chromatography. Based on these results, we discuss the large potential of lipid sponge phases as carriers for proteins.


Assuntos
Ácido Aspártico Proteases/metabolismo , Enzimas Imobilizadas/metabolismo , Lipídeos/química , Cristais Líquidos/química , Área Sob a Curva , Liofilização , Glicerol/farmacologia , Nanopartículas/química , Tamanho da Partícula , Espalhamento de Radiação , Análise Espectral Raman
10.
Langmuir ; 35(43): 13904-13914, 2019 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-31566987

RESUMO

The self-assembly of the two anomeric forms of n-hexadecyl-d-maltopyranoside (denoted α-C16G2 and ß-C16G2) has been studied in dilute aqueous solution by means of surface tension measurements, scattering methods (dynamic light scattering, static light scattering, and small-angle X-ray and neutron scattering), and cryo-transmission electron microscopy at different surfactant concentrations and temperatures. Surface tension measurements demonstrate differences in the surfactant adsorption at the air-water interface, where α-C16G2 shows a lower CMC than ß-C16G2. Similarly, micelle morphology was found to profoundly depend on anomerism. ß-C16G2 preferentially forms very elongated micelles with large persistence lengths, whereas α-C16G2 assembles into smaller micelles for which the structure varies with concentration and temperature. The differences between the two surfactant anomers in terms of self-assembly can be attributed to the interaction between neighboring headgroups. Specifically, ß-C16G2 allows for a closer packing in the palisade layer, hence reducing the micelle curvature and promoting the formation of more elongated micelles. Strong intermolecular headgroup interactions may also account for the observed rigidity of the micelles.

11.
Soft Matter ; 15(10): 2178-2189, 2019 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-30742188

RESUMO

The advantage of using nonlamellar lipid liquid crystalline phases has been demonstrated in many applications, such as drug delivery, protein encapsulation and crystallisation. We have recently reported that a mixture of mono- and diglycerides is able to form sponge-like nanoparticles (L3-NPs) with large enough aqueous pores to encapsulate macromolecules such as proteins. Here we use small angle neutron scattering (SANS) to reveal morphology, structural and chemical composition of these polysorbate 80 (P80) stabilized sponge phase nanoparticles, not previously known. Our results suggest that L3-NPs have a core-shell sphere structure, with a shell rich in P80. It was also found that even if P80 is mostly located on the surface, it also contributes to the formation of the inner sponge phase structure. An important aspect for the application and colloidal stability of these particles is their interfacial properties. Therefore, the interfacial behaviour of the nanoparticles on hydrophilic silica was revealed by Quartz crystal microbalance with dissipation (QCM-D) and neutron reflectivity (NR). Adsorption experiments reveal the formation of a thin lipid layer, with the dimension corresponding to a lipid bilayer after L3-NPs are in contact with hydrophilic silica. This suggests that the diglycerol monoleate/Capmul GMO-50/P80 particles reorganize themselves on this surface, probably due to interactions between P80 head group and SiO2.


Assuntos
Lipídeos/química , Nanopartículas/química , Dióxido de Silício/química , Interações Hidrofóbicas e Hidrofílicas , Cristais Líquidos/química , Modelos Moleculares , Tamanho da Partícula , Propriedades de Superfície
12.
Nano Lett ; 18(8): 4796-4802, 2018 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-30001138

RESUMO

Semiconductor nanowires can act as nanoscaled optical fibers, enabling them to guide and concentrate light emitted by surface-bound fluorophores, potentially enhancing the sensitivity of optical biosensing. While parameters such as the nanowire geometry and the fluorophore wavelength can be expected to strongly influence this lightguiding effect, no detailed description of their effect on in-coupling of fluorescent emission is available to date. Here, we use confocal imaging to quantify the lightguiding effect in GaP nanowires as a function of nanowire geometry and light wavelength. Using a combination of finite-difference time-domain simulations and analytical approaches, we identify the role of multiple waveguide modes for the observed lightguiding. The normalized frequency parameter, based on the step-index approximation, predicts the lightguiding ability of the nanowires as a function of diameter and fluorophore wavelength, providing a useful guide for the design of optical biosensors based on nanowires.


Assuntos
Técnicas Biossensoriais/instrumentação , Corantes Fluorescentes/química , Gálio/química , Nanofios/química , Fosfinas/química , Óxido de Alumínio/química , Fluorescência , Luz , Fibras Ópticas , Tamanho da Partícula , Semicondutores , Propriedades de Superfície
13.
Appl Microbiol Biotechnol ; 102(12): 5149-5163, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29680901

RESUMO

ß-Mannanases catalyze the conversion and modification of ß-mannans and may, in addition to hydrolysis, also be capable of transglycosylation which can result in enzymatic synthesis of novel glycoconjugates. Using alcohols as glycosyl acceptors (alcoholysis), ß-mannanases can potentially be used to synthesize alkyl glycosides, biodegradable surfactants, from renewable ß-mannans. In this paper, we investigate the synthesis of alkyl mannooligosides using glycoside hydrolase family 5 ß-mannanases from the fungi Trichoderma reesei (TrMan5A and TrMan5A-R171K) and Aspergillus nidulans (AnMan5C). To evaluate ß-mannanase alcoholysis capacity, a novel mass spectrometry-based method was developed that allows for relative comparison of the formation of alcoholysis products using different enzymes or reaction conditions. Differences in alcoholysis capacity and potential secondary hydrolysis of alkyl mannooligosides were observed when comparing alcoholysis catalyzed by the three ß-mannanases using methanol or 1-hexanol as acceptor. Among the three ß-mannanases studied, TrMan5A was the most efficient in producing hexyl mannooligosides with 1-hexanol as acceptor. Hexyl mannooligosides were synthesized using TrMan5A and purified using high-performance liquid chromatography. The data suggests a high selectivity of TrMan5A for 1-hexanol as acceptor over water. The synthesized hexyl mannooligosides were structurally characterized using nuclear magnetic resonance, with results in agreement with their predicted ß-conformation. The surfactant properties of the synthesized hexyl mannooligosides were evaluated using tensiometry, showing that they have similar micelle-forming properties as commercially available hexyl glucosides. The present paper demonstrates the possibility of using ß-mannanases for alkyl glycoside synthesis and increases the potential utilization of renewable ß-mannans.


Assuntos
Aspergillus nidulans/enzimologia , Glicosídeos/biossíntese , Trichoderma/enzimologia , beta-Manosidase/metabolismo , Hidrólise , Mananas/metabolismo
15.
Biophys J ; 112(8): 1586-1596, 2017 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-28445750

RESUMO

The last decade established that the dynamic properties of the phosphoproteome are central to function and its modulation. The temporal dimension of phosphorylation effects remains nonetheless poorly understood, particularly for intrinsically disordered proteins. Osteopontin, selected for this study due to its key role in biomineralization, is expressed in many species and tissues to play a range of distinct roles. A notable property of highly phosphorylated isoforms of osteopontin is their ability to sequester nanoclusters of calcium phosphate to form a core-shell structure, in a fluid that is supersaturated but stable. In Biology, this process enables soft and hard tissues to coexist in the same organism with relative ease. Here, we extend our understanding of the effect of phosphorylation on a disordered protein, the recombinant human-like osteopontin rOPN. The solution structures of the phosphorylated and unphosphorylated rOPN were investigated by small-angle x-ray scattering and no significant changes were detected on the radius of gyration or maximum interatomic distance. The picosecond-to-nanosecond dynamics of the hydrated powders of the two rOPN forms were further compared by elastic and quasi-elastic incoherent neutron scattering. Phosphorylation was found to block some nanosecond side-chain motions while increasing the flexibility of other side chains on the faster timescale. Phosphorylation can thus selectively change the dynamic behavior of even a highly disordered protein such as osteopontin. Through such an effect on rOPN, phosphorylation can direct allosteric mechanisms, interactions with substrates, cofactors and, in this case, amorphous or crystalline biominerals.


Assuntos
Osteopontina/metabolismo , Animais , Bovinos , Elasticidade , Eletroforese em Gel de Poliacrilamida , Endopeptidase K/metabolismo , Escherichia coli , Cavalos , Humanos , Simulação de Dinâmica Molecular , Difração de Nêutrons , Ressonância Magnética Nuclear Biomolecular , Osteopontina/química , Fosforilação , Proteólise , Espectroscopia de Prótons por Ressonância Magnética , Proteínas Recombinantes/química , Proteínas Recombinantes/metabolismo , Espalhamento a Baixo Ângulo , Soluções , Água/química , Difração de Raios X
16.
Langmuir ; 33(44): 12804-12813, 2017 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-28981289

RESUMO

Oxylipins, or fatty aldehydes, are a class of molecules produced from membrane lipids as a result of oxidative stress or enzyme-mediated peroxidation. Here we report the effects of two biologically important fatty aldehydes, trans,trans-2,4-decanedienal (DD) and cis-11-hexadecenal (HD), on the phase behavior of the lipid 1,2-dioleoyl-sn-glycero-3-phosphoethanolamine (DOPE) in water. We compare the phase behavior of DD/DOPE and HD/DOPE mixtures to the phase behavior of oleic acid/DOPE mixtures and show that DD, HD, and oleic acid have similar effects on the phase diagrams of DOPE. Notably, both DD and HD, like oleic acid, induce the formation of Fd3m inverse micellar cubic phases in DOPE/water mixtures. This is the first time that Fd3m phases in fatty aldehyde-containing mixtures have been reported. We assess the effects of DD, HD, and oleic acid on DOPE in terms of lipid spontaneous curvatures and propose a method to predict the formation of Fd3m phases from the curvature power of amphiphiles. This methodology predicts that Fd3m phases will become stable if the spontaneous curvature of a lipid mixture is -0.48 ± 0.05 nm-1 or less.

17.
J Dairy Res ; 84(2): 229-238, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28524017

RESUMO

The objective of the research presented in this paper was to investigate how different characteristics of whey protein microparticles (MWP) added to milk as fat replacers influence intermolecular interactions occurring with other milk proteins during homogenisation and heating. These interactions are responsible for the formation of heat-induced aggregates that influence the texture and sensory characteristics of the final product. The formation of heat-induced complexes was studied in non- and low-fat milk model systems, where microparticulated whey protein (MWP) was used as fat replacer. Five MWP types with different particle characteristics were utilised and three heat treatments used: 85 °C for 15 min, 90 °C for 5 min and 95 °C for 2 min. Surface characteristics of the protein aggregates were expressed as the number of available thiol groups and the surface net charge. Intermolecular interactions involved in the formation of protein aggregates were studied by polyacrylamide gel electrophoresis and the final complexes visualised by darkfield microscopy. Homogenisation of non-fat milk systems led to partial adsorption of caseins onto microparticles, independently of the type of microparticle. On the contrary, homogenisation of low-fat milk resulted in preferential adsorption of caseins onto fat globules, rather than onto microparticles. Further heating of the milk, led to the formation of heat induced complexes with different sizes and characteristics depending on the type of MWP and the presence or not of fat. The results highlight the importance of controlling homogenisation and heat processing in yoghurt manufacture in order to induce desired changes in the surface reactivity of the microparticles and thereby promote effective protein interactions.


Assuntos
Manipulação de Alimentos/métodos , Temperatura Alta , Leite/química , Proteínas do Soro do Leite/química , Adsorção , Animais , Caseínas/química , Eletroforese em Gel de Poliacrilamida , Gorduras/análise , Gorduras/química , Proteínas do Leite/química , Agregados Proteicos , Desnaturação Proteica , Compostos de Sulfidrila/análise , Compostos de Sulfidrila/química , Iogurte
18.
Langmuir ; 32(23): 5721-30, 2016 06 14.
Artigo em Inglês | MEDLINE | ID: mdl-27166642

RESUMO

This work focuses on adsorption of polyions onto oppositely charged surfaces and on responses to the addition of a simple monovalent salt as well as to the polyion length (degree of polymerization). We also discuss possible mechanisms underlying observed differences, of the adsorbed amount on silica surfaces at high pH, between seemingly similar polyions. This involves theoretical modeling, utilizing classical polymer density functional theory (DFT). We furthermore investigate how long- and short-chain versions of the polymer adsorb onto carboxymethylated cellulose, carrying a high negative charge. Interestingly enough, comparing results obtained for the two different surfaces, we observe an opposite qualitative response for the molecular weight. The large polymer adsorbs more strongly at a silica surface, but for cellulose at low salt levels, there are indications that the trend is opposite. Another difference is the very slow adsorption process observed for cellulose, particularly with short polymers; in fact, with short polymers, we were sometimes unable to establish any adsorption plateau at all. We speculate that the slow dynamics is due to a gradual diffusion of short polymers into the cellulose matrix. This phenomenon could also explain why short-chain polymers seem to adsorb more strongly than long-chain ones, at low salt concentrations, provided that the latter then are too large to enter the cellulose pores. Cellulose swelling at high salt concentrations might diminish these differences, leading to more similar adsorbed amounts or even a lower adsorption for short chains.

19.
Langmuir ; 32(34): 8650-9, 2016 08 30.
Artigo em Inglês | MEDLINE | ID: mdl-27482838

RESUMO

The lipid liquid crystalline sponge phase (L3) has the advantages that it is a nanoscopically bicontinuous bilayer network able to accommodate large amounts of water and it is easy to manipulate due to its fluidity. This paper reports on the detailed characterization of L3 phases with water channels large enough to encapsulate bioactive macromolecules such as proteins. The aqueous phase behavior of a novel lipid mixture system, consisting of diglycerol monooleate (DGMO), and a mixture of mono-, di- and triglycerides (Capmul GMO-50) was studied. In addition, sponge-like nanoparticles (NPs) stabilized by Polysorbate 80 (P80) were prepared based on the DGMO/GMO-50 system, and their structure was correlated with the phase behavior of the corresponding bulk system. These NPs were characterized by dynamic light scattering (DLS), cryo-transmission electron microscopy (Cryo-TEM) and small angle X-ray scattering (SAXS) to determine their size, shape, and inner structure as a function of the DGMO/GMO-50 ratio. In addition, the effect of P80 as stabilizer was investigated. We found that the NPs have aqueous pores with diameters up to 13 nm, similar to the ones in the bulk phase.

20.
Langmuir ; 32(39): 10083-10092, 2016 10 04.
Artigo em Inglês | MEDLINE | ID: mdl-27603198

RESUMO

Recently we reported a method for estimating the spontaneous curvatures of lipids from temperature-dependent changes in the lattice parameter of inverse hexagonal liquid crystal phases of binary lipid mixtures. This method makes use of 1,2-dioleoyl-sn-glycerol-3-phosphoethanolamine (DOPE) as a host lipid, which preferentially forms an inverse hexagonal phase to which a guest lipid of unknown spontaneous curvature is added. The lattice parameters of these binary lipid mixtures are determined by small-angle X-ray diffraction at a range of temperatures and the spontaneous curvature of the guest lipid is determined from these data. Here we report the use of this method on a wide range of lipids under different ionic conditions. We demonstrate that our method provides spontaneous curvature values for DOPE, cholesterol, and monoolein that are within the range of values reported in the literature. Anionic lipids 1,2-dioleoyl-sn-glycerol-3-phosphatidic acid (DOPA) and 1,2-dioleoyl-sn-glycerol-3-phosphoserine (DOPS) were found to exhibit spontaneous curvatures that depend on the concentration of divalent cations present in the mixtures. We show that the range of curvatures estimated experimentally for DOPA and DOPS can be explained by a series of equilibria arising from lipid-cation exchange reactions. Our data indicate a universal relationship between the spontaneous curvature of a lipid and the extent to which it affects the lattice parameter of the hexagonal phase of DOPE when it is part of a binary mixture. This universal relationship affords a rapid way of estimating the spontaneous curvatures of lipids that are expensive, only available in small amounts, or are of limited chemical stability.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA