Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 119(11): e2111332119, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35254906

RESUMO

SignificanceThe temperature difference between low and high latitudes is one measure of the efficiency of the global climate system in redistributing heat and is used to test the ability of models to represent the climate system through time. Here, we show that the latitudinal temperature gradient has exhibited a consistent inverse relationship with global mean sea-surface temperature for at least the past 95 million years. Our results help reduce conflicts between climate models and empirical estimates of temperature and argue for a fundamental consistency in the dynamics of heat transport and radiative transfer across vastly different background states.

2.
Proc Natl Acad Sci U S A ; 117(41): 25302-25309, 2020 10 13.
Artigo em Inglês | MEDLINE | ID: mdl-32989142

RESUMO

Falling atmospheric CO2 levels led to cooling through the Eocene and the expansion of Antarctic ice sheets close to their modern size near the beginning of the Oligocene, a period of poorly documented climate. Here, we present a record of climate evolution across the entire Oligocene (33.9 to 23.0 Ma) based on TEX86 sea surface temperature (SST) estimates from southwestern Atlantic Deep Sea Drilling Project Site 516 (paleolatitude ∼36°S) and western equatorial Atlantic Ocean Drilling Project Site 929 (paleolatitude ∼0°), combined with a compilation of existing SST records and climate modeling. In this relatively low CO2 Oligocene world (∼300 to 700 ppm), warm climates similar to those of the late Eocene continued with only brief interruptions, while the Antarctic ice sheet waxed and waned. SSTs are spatially heterogenous, but generally support late Oligocene warming coincident with declining atmospheric CO2 This Oligocene warmth, especially at high latitudes, belies a simple relationship between climate and atmospheric CO2 and/or ocean gateways, and is only partially explained by current climate models. Although the dominant climate drivers of this enigmatic Oligocene world remain unclear, our results help fill a gap in understanding past Cenozoic climates and the way long-term climate sensitivity responded to varying background climate states.

3.
Sci Data ; 9(1): 753, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36473868

RESUMO

Paleotemperature proxy data form the cornerstone of paleoclimate research and are integral to understanding the evolution of the Earth system across the Phanerozoic Eon. Here, we present PhanSST, a database containing over 150,000 data points from five proxy systems that can be used to estimate past sea surface temperature. The geochemical data have a near-global spatial distribution and temporally span most of the Phanerozoic. Each proxy value is associated with consistent and queryable metadata fields, including information about the location, age, and taxonomy of the organism from which the data derive. To promote transparency and reproducibility, we include all available published data, regardless of interpreted preservation state or vital effects. However, we also provide expert-assigned diagenetic assessments, ecological and environmental flags, and other proxy-specific fields, which facilitate informed and responsible reuse of the database. The data are quality control checked and the foraminiferal taxonomy has been updated. PhanSST will serve as a valuable resource to the paleoclimate community and has myriad applications, including evolutionary, geochemical, diagenetic, and proxy calibration studies.


Assuntos
Reprodutibilidade dos Testes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA