RESUMO
The veiled chameleon (Chamaeleo calyptratus) is a typical member of the family Chamaeleonidae and a promising object for comparative cytogenetics and genomics. The karyotype of C. calyptratus differs from the putative ancestral chameleon karyotype (2n = 36) due to a smaller chromosome number (2n = 24) resulting from multiple chromosome fusions. The homomorphic sex chromosomes of an XX/XY system were described recently using male-specific RADseq markers. However, the chromosomal pair carrying these markers was not identified. Here we obtained chromosome-specific DNA libraries of C. calyptratus by chromosome flow sorting that were assigned by FISH and sequenced. Sequence comparison with three squamate reptiles reference genomes revealed the ancestral syntenic regions in the C. calyptratus chromosomes. We demonstrated that reducing the chromosome number in the C. calyptratus karyotype occurred through two fusions between microchromosomes and four fusions between micro-and macrochromosomes. PCR-assisted mapping of a previously described Y-specific marker indicates that chromosome 5 may be the sex chromosome pair. One of the chromosome 5 conserved synteny blocks shares homology with the ancestral pleurodont X chromosome, assuming parallelism in the evolution of sex chromosomes from two basal Iguania clades (pleurodonts and acrodonts). The comparative chromosome map produced here can serve as the foundation for future genome assembly of chameleons and vertebrate-wide comparative genomic studies.
Assuntos
Lagartos , Animais , Masculino , Sintenia/genética , Lagartos/genética , Cromossomos Sexuais/genética , Cromossomos , Genoma , Cariótipo , Evolução MolecularRESUMO
Although Rallidae is the most diverse family within Gruiformes, there is little information concerning the karyotype of the species in this group. In fact, Gallinula melanops, a species of Rallidae found in Brazil, is among the few species studied cytogenetically, but only with conventional staining and repetitive DNA mapping, showing 2n=80. Thus, in order to understand the karyotypic evolution and phylogeny of this group, the present study aimed to analyze the karyotype of G. melanops by classical and molecular cytogenetics, comparing the results with other species of Gruiformes. The results show that G. melanops has the same chromosome rearrangements as described in Gallinula chloropus (Clade Fulica), including fission of ancestral chromosomes 4 and 5 of Gallus gallus (GGA), beyond the fusion between two of segments resultants of the GGA4/GGA5, also fusions between the chromosomes GGA6/GGA7. Thus, despite the fact that some authors have suggested the inclusion of G. melanops in genus Porphyriops, our molecular cytogenetic results confirm its place in the Gallinula genus.
RESUMO
Cytogenetic analyses of the Suboscines species are still scarce, and so far, there is no karyotype description of any species belonging to the family Conopophagidae. Thus, the aim of this study is to describe and analyze the karyotype of Conopophaga lineata by chromosome painting using Gallus gallus (GGA) probes and to identify the location of the 18/28S rDNA cluster. Metaphases were obtained from fibroblast culture from two individuals of C. lineata. We observed a diploid number of 2n=78. GGA probes showed that most ancestral syntenies are conserved, except for the fission of GGA1 and GGA2, into two distinct pairs each. We identified the location of 18S rDNA genes in a pair of microchromosomes. The fission of the syntenic group corresponding to GGA2 was observed in other Furnariida, and hence may correspond to a chromosomal synapomorphy for the species of Parvorder Furnariida.
RESUMO
Hummingbirds (Trochilidae) are one of the most enigmatic avian groups, and also among the most diverse, with approximately 360 recognized species in 106 genera, of which 43 are monotypic. This fact has generated considerable interest in the evolutionary biology of the hummingbirds, which is reflected in a number of DNA-based studies. However, only a few of them explored chromosomal data. Given this, the present study provides an analysis of the karyotypes of three species of Neotropical hummingbirds, Anthracothorax nigricollis (ANI), Campylopterus largipennis (CLA), and Hylocharis chrysura (HCH), in order to analyze the chromosomal processes associated with the evolution of the Trochilidae. The diploid number of ANI is 2n=80 chromosomes, while CLA and HCH have identical karyotypes, with 2n=78. Chromosome painting with Gallus gallus probes (GGA1-12) shows that the hummingbirds have a karyotype close to the proposed ancestral bird karyotype. Despite this, an informative rearrangement was detected: an in-tandem fusion between GGA7 and GGA9 found in CLA and HCH, but absent in ANI. A comparative analysis with the tree of life of the hummingbirds indicated that this fusion must have arisen following the divergence of a number of hummingbird species.
RESUMO
The order Charadriiformes comprises three major clades: Lari and Scolopaci as sister group to Charadrii. Until now, only three Charadriiformes species have been studied by chromosome painting: Larus argentatus (Lari), Burhinus oedicnemus and Vanellus chilensis (Charadrii). Hence, there is a lack of information concerning the third clade, Scolapaci. Based on this, and to gain a better understanding of karyotype evolution in the order Charadriiformes, we applied conventional and molecular cytogenetic approaches in a species belonging to clade Scolopaci - the wattled jacana (Jacana jacana) - using Gallus gallus and Zenaida auriculata chromosome-specific probes. Cross-species evaluation of J. jacana chromosomes shows extensive genomic reshuffling within macrochromosomes during evolution, with multiple fission and fusion events, although the diploid number remains at high level (2n=82). Interestingly, this species does not have the GGA7-8 fusion, which was found in two representatives of Charadrii clade, reinforcing the idea that this fusion may be exclusive to the Charadrii clade. In addition, it is shown that the chromosome evolution in Charadriiformes is complex and resulted in species with typical and atypical karyotypes. The karyotypic features of Scolopaci are very different from those of Charadrii and Lari, indicating that after divergence, each suborder has undergone different chromosome rearrangements.
RESUMO
The mammalian Y Chromosome sequence, critical for studying male fertility and dispersal, is enriched in repeats and palindromes, and thus, is the most difficult component of the genome to assemble. Previously, expensive and labor-intensive BAC-based techniques were used to sequence the Y for a handful of mammalian species. Here, we present a much faster and more affordable strategy for sequencing and assembling mammalian Y Chromosomes of sufficient quality for most comparative genomics analyses and for conservation genetics applications. The strategy combines flow sorting, short- and long-read genome and transcriptome sequencing, and droplet digital PCR with novel and existing computational methods. It can be used to reconstruct sex chromosomes in a heterogametic sex of any species. We applied our strategy to produce a draft of the gorilla Y sequence. The resulting assembly allowed us to refine gene content, evaluate copy number of ampliconic gene families, locate species-specific palindromes, examine the repetitive element content, and produce sequence alignments with human and chimpanzee Y Chromosomes. Our results inform the evolution of the hominine (human, chimpanzee, and gorilla) Y Chromosomes. Surprisingly, we found the gorilla Y Chromosome to be similar to the human Y Chromosome, but not to the chimpanzee Y Chromosome. Moreover, we have utilized the assembled gorilla Y Chromosome sequence to design genetic markers for studying the male-specific dispersal of this endangered species.
Assuntos
Biologia Computacional , Sequenciamento de Nucleotídeos em Larga Escala , Mamíferos/genética , Cromossomo Y , Animais , Biologia Computacional/métodos , Rearranjo Gênico , Genoma , Genômica , Gorilla gorilla/genética , Humanos , Sequências Repetidas Invertidas , Masculino , Repetições de Microssatélites , Pan troglodytes/genética , Sequências Repetitivas de Ácido Nucleico , Análise de Sequência de DNARESUMO
Supernumerary elements of the genome are often called B chromosomes. They usually consist of various autosomal sequences and, because of low selective pressure, are mostly pseudogenized and contain many repeats. There are numerous reports on B chromosomes in mammals, fish, invertebrates, plants, and fungi, but only a few of them have been studied using sequencing techniques. However, reptilian supernumerary chromosomes have been detected only cytogenetically and never sequenced or analyzed at the molecular level. One model squamate species with available genome sequence is Anolis carolinensis. The scope of the present article is to describe the genetic content of A. carolinensis supernumerary chromosomes. In this article, we confirm the presence of B chromosomes in this species by reverse painting and synaptonemal complex analysis. We applied low-pass high-throughput sequencing to analyze flow-sorted B chromosomes. Anole B chromosomes exhibit similar traits to other supernumerary chromosomes from different taxons: they contain two genes related to cell division control (INCENP and SPIRE2), are enriched in specific repeats, and show a high degree of pseudogenization. Therefore, the present study confirms that reptilian B chromosomes resemble supernumerary chromosomes of other taxons.
Assuntos
Cromossomos/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Lagartos/genética , Análise de Sequência de DNA/métodos , Animais , Divisão Celular , Proteínas Cromossômicas não Histona/genética , Mapeamento Cromossômico , Coloração Cromossômica , Evolução Molecular , Proteínas dos Microfilamentos/genética , FilogeniaRESUMO
Chromosome homologies in reptiles have been investigated extensively by gene mapping and chromosome painting. Relative chromosome size can be estimated roughly from conventional karyotypes, but chromosome GC content cannot be evaluated by any of these approaches. However, GC content can be obtained by whole-genome sequencing, although complete data are available only for a limited number of reptilian species. Chromosomes can be characterized by size and GC content in bivariate flow karyotypes, in which the distribution of peaks represents the differences. We have analysed flow karyotypes from 9 representative squamate species and show chromosome profiles for each species based on the relationship between size and GC content. Our results reveal that the GC content of macrochromosomes is invariable in the 9 species. A higher GC content was found in microchromosomes, similar to profiles previously determined in crocodile, turtle, and chicken. The findings suggest that karyotype evolution in reptiles is characterized by unique features of chromosome GC content.
Assuntos
Composição de Bases/genética , Cromossomos/genética , Cariotipagem/métodos , Répteis/genética , Animais , Evolução Molecular , Tamanho do Genoma , Filogenia , Répteis/classificação , Especificidade da Espécie , Sequenciamento Completo do Genoma/métodosRESUMO
Despite the variation observed in the diploid chromosome number of storks (Ciconiiformes, Ciconiidae), from 2n = 52 to 2n = 78, most reports have relied solely on analyses by conventional staining. As most species have similar macrochromosomes, some authors propose that karyotype evolution involves mainly fusions between microchromosomes, which are highly variable in species with different diploid numbers. In order to verify this hypothesis, in this study, the karyotypes of 2 species of storks from South America with different diploid numbers, the jabiru (Jabiru mycteria, 2n = 56) and the maguary stork (Ciconia maguary, 2n = 72), were analyzed by chromosome painting using whole chromosome probes from the macrochromosomes of Gallus gallus (GGA) and Leucopternis albicollis (LAL). The results revealed that J. mycteria and C. maguary share synteny within chromosome pairs 1-9 and Z. The syntenies to the macrochromosomes of G. gallus are conserved, except for GGA4, which is homologous to 2 different pairs, as in most species of birds. A fusion of GGA8 and GGA9 was observed in both species. Additionally, chromosomes corresponding to GGA4p and GGA6 are fused to other segments that did not hybridize to any of the macrochromosome probes used, suggesting that these segments correspond to microchromosomes. Hence, our data corroborate the proposed hypothesis that karyotype evolution is based on fusions involving microchromosomes. In view of the morphological constancy of the macrochromosome pairs in most Ciconiidae, we propose a putative ancestral karyotype for the family, including the GGA8/GGA9 fusion, and a diploid number of 2n = 78. The use of probes for microchromosome pairs should be the next step in identifying other synapomorphies that may help to clarify the phylogeny of this family.
Assuntos
Aves/genética , Coloração Cromossômica/veterinária , Cromossomos/genética , Variação Genética/genética , Cariótipo , Animais , Brasil , Diploide , Evolução Molecular , Feminino , FilogeniaRESUMO
Pigeons and doves (Columbiformes) are one of the oldest and most diverse extant lineages of birds. However, the karyotype evolution within Columbiformes remains unclear. To delineate the synteny-conserved segments and karyotypic differences among four Columbidae species, we used chromosome painting from Gallus gallus (GGA, 2n = 78) and Leucopternis albicollis (LAL, 2n = 68). Besides that, a set of painting probes for the eared dove, Zenaida auriculata (ZAU, 2n = 76), was generated from flow-sorted chromosomes. Chromosome painting with GGA and ZAU probes showed conservation of the first ten ancestral pairs in Z. auriculata, Columba livia, and Columbina picui, while in Leptotila verreauxi, fusion of the ancestral chromosomes 6 and 7 was observed. However, LAL probes revealed a complex reorganization of ancestral chromosome 1, involving paracentric and pericentric inversions. Because of the presence of similar intrachromosomal rearrangements in the chromosomes corresponding to GGA1q in the Columbidae and Passeriformes species but without a common origin, these results are consistent with the recent proposal of divergence within Neoaves (Passerea and Columbea). In addition, inversions in chromosome 2 were identified in C. picui and L. verreauxi. Thus, in four species of distinct genera of the Columbidae family, unique chromosomal rearrangements have occurred during karyotype evolution, confirming that despite conservation of the ancestral syntenic groups, these chromosomes have been modified by the occurrence of intrachromosomal rearrangements.
Assuntos
Coloração Cromossômica , Columbidae/genética , Pardais/genética , Animais , Galinhas , Inversão Cromossômica , Cromossomos/genética , Evolução Molecular , Rearranjo Gênico , Humanos , Cariótipo , SinteniaRESUMO
The involvement of chromosome changes in the initial steps of speciation is controversial. Here we examine diversification trends within the mole voles Ellobius, a group of subterranean rodents. The first description of their chromosome variability was published almost 40 years ago. Studying the G-band structure of chromosomes in numerous individuals revealed subsequent homologous, step-by-step, Robertsonian translocations, which changed diploid numbers from 54 to 30. Here we used a molecular cytogenetic strategy which demonstrates that chromosomal translocations are not always homologous; consequently, karyotypes with the same diploid number can carry different combinations of metacentrics. We further showed that at least three chromosomal forms with 2n = 34 and distinct metacentrics inhabit the Pamir-Alay mountains. Each of these forms independently hybridized with E. tancrei, 2n = 54, forming separate hybrid zones. The chromosomal variations correlate slightly with geographic barriers. Additionally, we confirmed that the emergence of partial or monobrachial homology appeared to be a strong barrier for hybridization in nature, in contradistinction to experiments which we reported earlier. We discuss the possibility of whole arm reciprocal translocations for mole voles. Our findings suggest that chromosomal translocations lead to diversification and speciation.
Assuntos
Arvicolinae/genética , Cromossomos de Mamíferos/genética , Especiação Genética , Variação Genética , Translocação Genética/genética , Animais , Arvicolinae/classificação , Bandeamento Cromossômico , Diploide , Geografia , Hibridização Genética , Cariótipo , TadjiquistãoRESUMO
The hoatzin (Opisthocomus hoazin Müller, 1776) is a folivorous bird, endemic to the Amazonian region. It presents some unique characteristics, including wing claws and foregut fermentation, which make its phylogenetic relationship to other birds difficult to determine. There have been various attempts to place it among the Galliformes, Gruiformes, Musophagiformes, Cuculiformes, and Charadriiformes, but phylogenetic analyses always show low supporting values. Nowadays, the hoatzin is included in the monotypic order Opisthocomiformes, but the relationship of this order to other groups of birds is still unclear. Although its karyotype resembles the typical avian model, fissions of the syntenic groups corresponding to chicken chromosomes 1 and 2 and 2 fusions were found. The presence of 18S rDNA clusters in 2 pairs of microchromosomes is another derived character. Hence, different rearrangements were detected in the karyotype of the hoatzin, indicating it has been derived from the putative ancestral karyotype by the occurrence of fissions and fusions. However, as these rearrangements are not exclusive to O. hoazin, they do not clarify the phylogenetic position of this enigmatic species.
Assuntos
Aves/classificação , Aves/genética , Cariotipagem , Filogenia , Animais , Mapeamento Cromossômico , Coloração Cromossômica , DNA Ribossômico/genética , Diploide , Feminino , Hibridização in Situ Fluorescente , Metáfase , RNA Ribossômico 18S/genética , SinteniaRESUMO
Zonotrichia capensis is widely distributed in the Neotropics. Previous cytogenetic studies demonstrated the presence of polymorphisms in two chromosome pairs (ZCA2 and ZCA4). Here, we report results based on comparative chromosome painting, using probes derived from Gallus gallus and Leucopternis albicollis, focused on characterizing the chromosome organization of Z. capensis. Our results demonstrate the conservation of ancestral syntenies as observed previously in other species of passerine. Syntenies were rearranged by a series of inversions in the second chromosome as described in other Passeriformes, but in this species, by using probes derived from L. albicollis we observed an extra inversion in the second chromosome that had not previously been reported. We also report a paracentric inversion in pair 3; this chromosome corresponds to the second chromosome in Zonotrichia albicollis and may indicate the presence of ancestral inversions in the genus. The chromosomal inversions we found might be important for understanding the phenotypic variation that exists throughout the distribution of Z. capensis.
RESUMO
Trogons are forest birds with a wide distribution, being found in Africa, Asia, and America, and are included in the order Trogoniformes, family Trogonidae. Phylogenetic studies using molecular data have not been able to determine the phylogenetic relationship among the different genera of trogons. So far, no cytogenetic data for these birds exist. Hence, the aim of this study was to characterize the karyotype of Trogon surrucura surrucura by means of classical and molecular cytogenetics. We found a diploid chromosome number of 2n = 82, similar to most birds, with several derived features compared to chicken and the putative ancestral avian karyotype. T. s. surrucura showed 3 pairs of microchromosomes bearing 18S rDNA clusters. The Z and W sex chromosomes were of similar size but could readily be identified by morphological differences. Using chromosome painting with whole chromosome probes from Gallus gallus and Leucopternis albicollis, we found that the chromosomes homologous to chicken chromosomes 2 and 5 correspond to 2 different pairs in T. s. surrucura and L. albicollis, due to the occurrence of centric fissions. Paracentric inversions were detected in the segment homologous to chicken chromosome 1q, and we confirmed the recurrence of breakpoints when our results were compared to other species of birds already analyzed by FISH or by in silico genome assembly.
Assuntos
Aves/genética , Inversão Cromossômica/genética , Rearranjo Gênico/genética , Animais , Coloração Cromossômica/métodos , Diploide , Evolução Molecular , Cariótipo , Cariotipagem/métodos , Filogenia , Cromossomos Sexuais/genéticaRESUMO
Tyrannidae is the largest family of Passeriformes in the Neotropical region. However, despite an interesting chromosomal diversity, there are only few cytogenetic studies of this family, and most of these are based on conventional cytogenetics. Hence, we analyzed here the chromosomal diversity and karyotypical evolution of this group by chromosome painting in 3 different species - Pitangus sulphuratus, Serpophaga subcristata, and Satrapa icterophrys - and make comparisons with previous data. In addition to chromosome painting with Gallus gallus (GGA) and Leucopternis albicollis (LAL) probes, karyotypes were analyzed by conventional staining, C-banding, and FISH with 18S rDNA and telomeric probes. Although this family is characterized by extensive chromosomal variation, we found similar karyotypes and diploid numbers ranging from 2n = 80 in P. sulphuratus to 2n = 82 in S. subcristata and S. icterophrys. Constitutive heterochromatin was located centromerically in all 3 species. Clusters of 18S rDNA were present in 1 pair of microchromosomes, except in S. subcristata, where 2 pairs of microchromosomes were labeled. No interstitial telomeric sequences were detected. GGA and LAL whole-chromosome probes revealed the occurrence of fissions and both paracentric and pericentric inversions commonly seen in other Passeriformes. In general terms, tyrants show the typical karyotype found in Passeriformes, suggesting that the observed rearrangements occurred before the division of the suborders Oscines and Suboscines.
Assuntos
Inversão Cromossômica/veterinária , Coloração Cromossômica/veterinária , Aves Canoras/genética , Animais , Bandeamento Cromossômico , Inversão Cromossômica/genética , Cromossomos/ultraestrutura , DNA Ribossômico/genética , Especiação Genética , Heterocromatina/genética , RNA Ribossômico 18S/genética , Especificidade da Espécie , Telômero/genética , Telômero/ultraestruturaRESUMO
Here, for the first time, we describe the karyotype of Myiopsitta monachus (Psittacidae, Arini). We found 2n = 48, corresponding to the lowest diploid number observed in Neotropical Psittaciformes so far, with an uncommonly large W chromosome homomorphic to the Z. In order to better understand the evolution of the sex chromosomes in this species, we applied several molecular cytogenetic approaches, including C-banding, FISH mapping of repetitive DNAs (several microsatellite repeats), and whole-chromosome painting on metaphases of M. monachus. For comparison, another species belonging to the same tribe but with a smaller W chromosome (A. aestiva) was also analyzed. The results show that the constitutive heterochromatin has a very diverse distribution pattern in these species revealing heterochromatic blocks in the centromeric region of all chromosomes and in most of the length of the W chromosome in A. aestiva, while in M. monachus they were found in interstitial and telomeric regions. Concerning the microsatellites, only the sequence (CG)n produced signals on the W chromosome of A. aestiva, in the distal region of both arms. However, in M. monachus, (CAA)n, (CAG)n, and (CG)n probes were accumulated on the W chromosome, and, in addition, the sequence (CAG)n also hybridized to heterochromatic regions in macrochromosomes, as well as in microchromosomes. Based on these results, we suggest that the increase in length of the W chromosome in M. monachus is due to the amplification of repetitive elements, which highlights their significant role in the evolutionary process of sex chromosome differentiation.
Assuntos
Mapeamento Cromossômico , Psittaciformes/classificação , Psittaciformes/genética , Cromossomos Sexuais/genética , Animais , Feminino , Heterocromatina/genética , Cariotipagem , Masculino , Sequências Repetitivas de Ácido Nucleico , Telômero/genéticaRESUMO
The subfamily Arvicolinae consists of a great number of species with highly diversified karyotypes. In spite of the wide use of arvicolines in biological and medicine studies, the data on their karyotype structures are limited. Here, we made a set of painting probes from flow-sorted chromosomes of a male Palearctic collared lemming (Dicrostonyx torquatus, DTO). Together with the sets of painting probes made previously from the field vole (Microtus agrestis, MAG) and golden hamster (Mesocricetus auratus, MAU), we carried out a reciprocal chromosome painting between these three species. The three sets of probes were further hybridized onto the chromosomes of the Eurasian water vole (Arvicola amphibius) and northern red-backed vole (Myodes rutilus). We defined the diploid chromosome number in D. torquatus karyotype as 2n = 45 + Bs and showed that the system of sex chromosomes is X1X2Y1. The probes developed here provide a genomic tool-kit, which will help to investigate the evolutionary biology of the Arvicolinae rodents. Our results show that the syntenic association MAG1/17 is present not only in Arvicolinae but also in some species of Cricetinae; and thus, should not be considered as a cytogenetic signature for Arvicolinae. Although cytogenetic signature markers for the genera have not yet been found, our data provides insight into the likely ancestral karyotype of Arvicolinae. We conclude that the karyotypes of modern voles could have evolved from a common ancestral arvicoline karyotype (AAK) with 2n = 56 mainly by centric fusions and fissions.
Assuntos
Arvicolinae/genética , Mapeamento Cromossômico/métodos , Coloração Cromossômica/métodos , Mesocricetus/genética , Sintenia/genética , Animais , Evolução Biológica , Linhagem Celular , Aberrações Cromossômicas , Bandeamento Cromossômico , Cricetinae , Marcadores Genéticos/genética , Cariótipo , Filogenia , Cromossomos Sexuais/genéticaRESUMO
BACKGROUND: B chromosomes are dispensable and variable karyotypic elements found in some species of animals, plants and fungi. They often originate from duplications and translocations of host genomic regions or result from hybridization. In most species, little is known about their DNA content. Here we perform high-throughput sequencing and analysis of B chromosomes of roe deer and brocket deer, the only representatives of Cetartiodactyla known to have B chromosomes. RESULTS: In this study we developed an approach to identify genomic regions present on chromosomes by high-throughput sequencing of DNA generated from flow-sorted chromosomes using degenerate-oligonucleotide-primed PCR. Application of this method on small cattle autosomes revealed a previously described KIT gene region translocation associated with colour sidedness. Implementing this approach to B chromosomes from two cervid species, Siberian roe deer (Capreolus pygargus) and grey brocket deer (Mazama gouazoubira), revealed dramatically different genetic content: roe deer B chromosomes consisted of two duplicated genomic regions (a total of 1.42-1.98 Mbp) involving three genes, while grey brocket deer B chromosomes contained 26 duplicated regions (a total of 8.28-9.31 Mbp) with 34 complete and 21 partial genes, including KIT and RET protooncogenes, previously found on supernumerary chromosomes in canids. Sequence variation analysis of roe deer B chromosomes revealed a high frequency of mutations and increased heterozygosity due to either amplification within B chromosomes or divergence between different Bs. In contrast, grey brocket deer B chromosomes were found to be more homogeneous and resembled autosomes in patterns of sequence variation. Similar tendencies were observed in repetitive DNA composition. CONCLUSIONS: Our data demonstrate independent origins of B chromosomes in the grey brocket and roe deer. We hypothesize that the B chromosomes of these two cervid species represent different stages of B chromosome sequences evolution: probably nascent and similar to autosomal copies in brocket deer, highly derived in roe deer. Based on the presence of the same orthologous protooncogenes in canids and brocket deer Bs we argue that genomic regions involved in B chromosome formation are not random. In addition, our approach is also applicable to the characterization of other evolutionary and clinical rearrangements.
Assuntos
Evolução Biológica , Cromossomos Humanos 4-5/química , Cromossomos de Mamíferos/química , Cervos/genética , Duplicação Gênica , Animais , Mapeamento Cromossômico , Primers do DNA/química , Cervos/classificação , Expressão Gênica , Heterozigoto , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Cariotipagem , Taxa de Mutação , Reação em Cadeia da Polimerase/métodos , Proteínas Proto-Oncogênicas c-kit/genética , Proteínas Proto-Oncogênicas c-ret/genética , Especificidade da EspécieRESUMO
Although more than thirty mammalian genomes have been sequenced to draft quality, very few of these include the Y chromosome. This has limited our understanding of the evolutionary dynamics of gene persistence and loss, our ability to identify conserved regulatory elements, as well our knowledge of the extent to which different types of selection act to maintain genes within this unique genomic environment. Here, we present the first MSY (male-specific region of the Y chromosome) sequences from two carnivores, the domestic dog and cat. By combining these with other available MSY data, our multiordinal comparison allows for the first accounting of levels of selection constraining the evolution of eutherian Y chromosomes. Despite gene gain and loss across the phylogeny, we show the eutherian ancestor retained a core set of 17 MSY genes, most being constrained by negative selection for nearly 100 million years. The X-degenerate and ampliconic gene classes are partitioned into distinct chromosomal domains in most mammals, but were radically restructured on the human lineage. We identified multiple conserved noncoding elements that potentially regulate eutherian MSY genes. The acquisition of novel ampliconic gene families was accompanied by signatures of positive selection and has differentially impacted the degeneration and expansion of MSY gene repertoires in different species.
Assuntos
Gatos/genética , Cromossomos de Mamíferos/genética , Cães/genética , Evolução Molecular , Filogenia , Cromossomo Y/genética , Animais , Loci Gênicos , Masculino , Seleção GenéticaRESUMO
Squamate reptiles show a striking diversity in modes of sex determination, including both genetic (XY or ZW) and temperature-dependent sex determination systems. The genomes of only a handful of species have been sequenced, analyzed and assembled including the genome of Anolis carolinensis. Despite a high genome coverage, only macrochromosomes of A. carolinensis were assembled whereas the content of most microchromosomes remained unclear. Most of the Anolis species have homomorphic XY sex chromosome system. However, some species have large heteromorphic XY chromosomes (e.g., A. sagrei) and even multiple sex chromosomes systems (e.g. A. pogus), that were shown to be derived from fusions of the ancestral XY with microautosomes. We applied next generation sequencing of flow sorting-derived chromosome-specific DNA pools to characterize the content and composition of microchromosomes in A. carolinensis and A. sagrei. Comparative analysis of sequenced chromosome-specific DNA pools revealed that the A. sagrei XY sex chromosomes contain regions homologous to several microautosomes of A. carolinensis. We suggest that the sex chromosomes of A. sagrei are derived by fusions of the ancestral sex chromosome with three microautosomes and subsequent loss of some genetic content on the Y chromosome.