RESUMO
OBJECTIVES: To develop and demonstrate the feasibility of a Global Open Source Severity of Illness Score (GOSSIS)-1 for critical care patients, which generalizes across healthcare systems and countries. DESIGN: A merger of several critical care multicenter cohorts derived from registry and electronic health record data. Data were split into training (70%) and test (30%) sets, using each set exclusively for development and evaluation, respectively. Missing data were imputed when not available. SETTING/PATIENTS: Two large multicenter datasets from Australia and New Zealand (Australian and New Zealand Intensive Care Society Adult Patient Database [ANZICS-APD]) and the United States (eICU Collaborative Research Database [eICU-CRD]) representing 249,229 and 131,051 patients, respectively. ANZICS-APD and eICU-CRD contributed data from 162 and 204 hospitals, respectively. The cohort included all ICU admissions discharged in 2014-2015, excluding patients less than 16 years old, admissions less than 6 hours, and those with a previous ICU stay. INTERVENTIONS: Not applicable. MEASUREMENTS AND MAIN RESULTS: GOSSIS-1 uses data collected during the ICU stay's first 24 hours, including extrema values for vital signs and laboratory results, admission diagnosis, the Glasgow Coma Scale, chronic comorbidities, and admission/demographic variables. The datasets showed significant variation in admission-related variables, case-mix, and average physiologic state. Despite this heterogeneity, test set discrimination of GOSSIS-1 was high (area under the receiver operator characteristic curve [AUROC], 0.918; 95% CI, 0.915-0.921) and calibration was excellent (standardized mortality ratio [SMR], 0.986; 95% CI, 0.966-1.005; Brier score, 0.050). Performance was held within ANZICS-APD (AUROC, 0.925; SMR, 0.982; Brier score, 0.047) and eICU-CRD (AUROC, 0.904; SMR, 0.992; Brier score, 0.055). Compared with GOSSIS-1, Acute Physiology and Chronic Health Evaluation (APACHE)-IIIj (ANZICS-APD) and APACHE-IVa (eICU-CRD), had worse discrimination with AUROCs of 0.904 and 0.869, and poorer calibration with SMRs of 0.594 and 0.770, and Brier scores of 0.059 and 0.063, respectively. CONCLUSIONS: GOSSIS-1 is a modern, free, open-source inhospital mortality prediction algorithm for critical care patients, achieving excellent discrimination and calibration across three countries.
Assuntos
Cuidados Críticos , Unidades de Terapia Intensiva , APACHE , Adolescente , Adulto , Austrália , Mortalidade Hospitalar , HumanosRESUMO
The availability of large, deidentified health datasets has enabled significant innovation in using machine learning (ML) to better understand patients and their diseases. However, questions remain regarding the true privacy of this data, patient control over their data, and how we regulate data sharing in a way that that does not encumber progress or further potentiate biases for underrepresented populations. After reviewing the literature on potential reidentifications of patients in publicly available datasets, we argue that the cost-measured in terms of access to future medical innovations and clinical software-of slowing ML progress is too great to limit sharing data through large publicly available databases for concerns of imperfect data anonymization. This cost is especially great for developing countries where the barriers preventing inclusion in such databases will continue to rise, further excluding these populations and increasing existing biases that favor high-income countries. Preventing artificial intelligence's progress towards precision medicine and sliding back to clinical practice dogma may pose a larger threat than concerns of potential patient reidentification within publicly available datasets. While the risk to patient privacy should be minimized, we believe this risk will never be zero, and society has to determine an acceptable risk threshold below which data sharing can occur-for the benefit of a global medical knowledge system.