Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Clin Sci (Lond) ; 138(4): 189-203, 2024 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-38300615

RESUMO

Sodium bicarbonate (NaHCO3) is commonly utilized as a therapeutic to treat metabolic acidosis in people with chronic kidney disease (CKD). While increased dietary sodium chloride (NaCl) is known to promote volume retention and increase blood pressure, the effects of NaHCO3 loading on blood pressure and volume retention in CKD remain unclear. In the present study, we compared the effects of NaCl and NaHCO3 loading on volume retention, blood pressure, and kidney injury in both 2/3 and 5/6 nephrectomy remnant kidney rats, a well-established rodent model of CKD. We tested the hypothesis that NaCl loading promotes greater volume retention and increases in blood pressure than equimolar NaHCO3. Blood pressure was measured 24 h daily using radio telemetry. NaCl and NaHCO3 were administered in drinking water ad libitum or infused via indwelling catheters. Rats were housed in metabolic cages to determine volume retention. Our data indicate that both NaHCO3 and NaCl promote hypertension and volume retention in remnant kidney rats, with salt-sensitivity increasing with greater renal mass reduction. Importantly, while NaHCO3 intake was less pro-hypertensive than equimolar NaCl intake, NaHCO3 was not benign. NaHCO3 loading significantly elevated blood pressure and promoted volume retention in rats with CKD when compared with control rats receiving tap water. Our findings provide important insight into the effects of sodium loading with NaHCO3 in CKD and indicate that NaHCO3 loading in patients with CKD is unlikely to be benign.


Assuntos
Hipertensão , Insuficiência Renal Crônica , Humanos , Ratos , Animais , Bicarbonato de Sódio/farmacologia , Bicarbonato de Sódio/uso terapêutico , Cloreto de Sódio/metabolismo , Cloreto de Sódio/farmacologia , Pressão Arterial , Rim/metabolismo , Insuficiência Renal Crônica/metabolismo , Pressão Sanguínea , Cloreto de Sódio na Dieta/farmacologia
2.
Am J Physiol Renal Physiol ; 324(2): F193-F210, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36475869

RESUMO

Chronic kidney disease (CKD) has a strong genetic component; however, the underlying pathways are not well understood. Dahl salt-sensitive (SS)/Jr rats spontaneously develop CKD with age and are used to investigate the genetic determinants of CKD. However, there are currently several genetically diverse Dahl SS rats maintained at various institutions and the extent to which some exhibit age-related CKD is unclear. We assessed glomerulosclerosis (GS) and tubulointerstitial fibrosis (TIF) in 3- and 6-mo-old male and female SS/JrHsdMcwi, BN/NHsd/Mcwi [Brown-Norway (BN)], and consomic SS-Chr 1BN/Mcwi (SS.BN1) rats, in which chromosome 1 from the BN rat was introgressed into the genome of the SS/JrHsdMcwi rat. Rats were fed a 0.4% NaCl diet. GS (31 ± 3% vs. 7 ± 1%) and TIF (2.3 ± 0.2 vs. 0.5 ± 0.1) were significantly greater in 6-mo-old compared with 3-mo-old SS/JrHsdMcwi rats, and CKD was exacerbated in males. GS was minimal in 6- and 3-mo-old BN (3.9 ± 0.6% vs. 1.2 ± 0.4%) and SS.BN1 (2.4 ± 0.5% vs. 1.0 ± 0.3%) rats, and neither exhibited TIF. In SS/JrHsdMcwi and SS.BN1 rats, mean arterial blood pressure was significantly greater in 6-mo-old compared with 3-mo-old SS/JrHsdMcwi (162 ± 4 vs. 131 ± 2 mmHg) but not SS.BN1 (115 ± 2 vs. 116 ± 1 mmHg) rats. In 6-mo-old SS/JrHsdMcwi rats, blood pressure was significantly greater in females. RNA-sequencing analysis revealed that inflammatory pathways were upregulated in isolated medullary thick ascending tubules in 7-wk-old SS/JrHsdMcwi rats, before the development of tubule pathology, compared with SS.BN1 rats. In summary, SS/JrHsdMcwi rats exhibit robust age-related progression of medullary thick ascending limb abnormalities, CKD, and hypertension, and gene(s) on chromosome 1 have a major pathogenic role in such changes.NEW & NOTEWORTHY This study shows that the robust age-related progression of kidney disease in Dahl SS/JrHsdMcw rats maintained on a normal-salt diet is abolished in consomic SS.BN1 rats. Evidence that medullary thick ascending limb segments of SS/JrHsdMcw rats are structurally abnormal and enriched in proinflammatory pathways before the development of protein casts provides new insights into the pathogenesis of kidney disease in this model.


Assuntos
Hipertensão , Nefropatias , Feminino , Humanos , Ratos , Masculino , Animais , Regulação para Cima , Cromossomos Humanos Par 1 , Ratos Endogâmicos Dahl , Hipertensão/genética , Ratos Endogâmicos BN , Cloreto de Sódio na Dieta , Cloreto de Sódio
3.
J Am Soc Nephrol ; 33(4): 769-785, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35115326

RESUMO

BACKGROUND: Vascular congestion of the renal medulla-trapped red blood cells in the medullary microvasculature-is a hallmark finding at autopsy in patients with ischemic acute tubular necrosis. Despite this, the pathogenesis of vascular congestion is not well defined. METHODS: In this study, to investigate the pathogenesis of vascular congestion and its role in promoting renal injury, we assessed renal vascular congestion and tubular injury after ischemia reperfusion in rats pretreated with low-dose LPS or saline (control). We used laser Doppler flowmetry to determine whether pretreatment with low-dose LPS prevented vascular congestion by altering renal hemodynamics during reperfusion. RESULTS: We found that vascular congestion originated during the ischemic period in the renal venous circulation. In control animals, the return of blood flow was followed by the development of congestion in the capillary plexus of the outer medulla and severe tubular injury early in reperfusion. Laser Doppler flowmetry indicated that blood flow returned rapidly to the medulla, several minutes before recovery of full cortical perfusion. In contrast, LPS pretreatment prevented both the formation of medullary congestion and its associated tubular injury. Laser Doppler flowmetry in LPS-pretreated rats suggested that limiting early reperfusion of the medulla facilitated this protective effect, because it allowed cortical perfusion to recover and clear congestion from the large cortical veins, which also drain the medulla. CONCLUSIONS: Blockage of the renal venous vessels and a mismatch in the timing of cortical and medullary reperfusion results in congestion of the outer medulla's capillary plexus and promotes early tubular injury after renal ischemia. These findings indicate that hemodynamics during reperfusion contribute to the renal medulla's susceptibility to ischemic injury.


Assuntos
Injúria Renal Aguda , Traumatismo por Reperfusão , Injúria Renal Aguda/etiologia , Injúria Renal Aguda/patologia , Injúria Renal Aguda/prevenção & controle , Animais , Humanos , Isquemia/complicações , Rim/patologia , Medula Renal/irrigação sanguínea , Lipopolissacarídeos , Ratos , Circulação Renal/fisiologia , Reperfusão/efeitos adversos , Traumatismo por Reperfusão/complicações , Traumatismo por Reperfusão/patologia , Traumatismo por Reperfusão/prevenção & controle
4.
Clin Sci (Lond) ; 136(20): 1433-1437, 2022 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-36254704

RESUMO

Worldwide, more than one in ten adults are estimated to have chronic kidney disease (CKD). As CKD progresses, both the cost of treatment and associated risk of morbidity and mortality increase exponentially. As such, there is a great need for therapies that effectively slow CKD progression. Evidence from several small clinical trials indicates that alkali therapy may slow the rate of CKD progression. The biological mechanisms underlying this protective effect, however, remain unknown. In their recently published manuscript, Pastor Arroyo et al. (Clin Sci (Lond) (2022) 136(8): https://doi.org/10.1042/CS20220095) demonstrate that the alkali sodium bicarbonate protects against loss of renal function in a crystal nephropathy model in mice. Using unbiased approaches in both mice and human tissue, the authors go on to identify two novel mechanisms that may underly this protection. The first pathway is through promoting pathways of cell metabolism, which they speculate helps the remaining functional nephrons adapt to the greater metabolic needs required to maintain kidney filtration. The second pathway is by restoration of α-Klotho levels, which may limit the expression of adhesion molecules in the injured kidney. This, the authors speculate, may prevent inflammation from driving the functional decline of the kidney. Identifying these novel pathways represents an important step forward harnessing the potential benefits of alkali therapy in CKD.


Assuntos
Insuficiência Renal Crônica , Bicarbonato de Sódio , Álcalis/metabolismo , Álcalis/farmacologia , Álcalis/uso terapêutico , Animais , Progressão da Doença , Humanos , Rim/metabolismo , Camundongos , Néfrons/metabolismo , Insuficiência Renal Crônica/metabolismo , Bicarbonato de Sódio/farmacologia , Bicarbonato de Sódio/uso terapêutico
5.
Clin Sci (Lond) ; 136(11): 825-840, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35535709

RESUMO

Acute kidney injury (AKI) due to ischemia is a serious and frequent clinical complication with mortality rates as high as 80%. Vascular congestion in the renal outer medulla occurs early after ischemia reperfusion (IR) injury, and congestion has been linked to worsened outcomes following IR. There is evidence implicating both male sex and preexisting hypertension as risk factors for poor outcomes following IR. The present study tested the hypothesis that male spontaneously hypertensive rats (SHR) have greater vascular congestion and impaired renal recovery following renal IR vs. female SHR and normotensive male Sprague-Dawley rats (SD). Thirteen-week-old male and female SHR and SD were subjected to sham surgery or 30 min of warm bilateral ischemia followed by reperfusion. Rats were euthanized 24 h or 7 days post-IR. IR increased renal injury in all groups vs. sham controls at 24 h. At 7 days post-IR, injury remained elevated only in male SHR. Histological examination of SD and SHR kidneys 24 h post-IR showed vascular congestion in males and females. Vascular congestion was sustained only in male SHR 7 days post-IR. To assess the role of vascular congestion on impaired recovery following IR, additional male and female SHR were pretreated with heparin (200 U/kg) prior to IR. Heparin pretreatment reduced IR-induced vascular congestion and improved renal function in male SHR 7 days post-IR. Interestingly, preventing increases in blood pressure (BP) in male SHR did not alter sustained vascular congestion. Our data demonstrate that IR-induced vascular congestion is a major driving factor for impaired renal recovery in male SHR.


Assuntos
Injúria Renal Aguda , Hipertensão , Traumatismo por Reperfusão , Injúria Renal Aguda/patologia , Animais , Feminino , Heparina/uso terapêutico , Hipertensão/tratamento farmacológico , Isquemia/patologia , Rim/patologia , Masculino , Perfusão/efeitos adversos , Ratos , Ratos Endogâmicos SHR , Ratos Sprague-Dawley , Traumatismo por Reperfusão/patologia
6.
Am J Physiol Renal Physiol ; 321(4): F494-F504, 2021 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-34396787

RESUMO

Impairments in insulin sensitivity can occur in patients with chronic kidney disease (CKD). Correction of metabolic acidosis has been associated with improved insulin sensitivity in CKD, suggesting that metabolic acidosis may directly promote insulin resistance. Despite this, the effect of acid or alkali loading on insulin sensitivity in a rodent model of CKD (remnant kidney) has not been directly investigated. Such studies could better define the relationship between blood pH and insulin sensitivity. We hypothesized that in remnant kidney rats, acid or alkali loading would promote loss of pH homeostasis and consequently decrease insulin sensitivity. To test this hypothesis, we determined the impact of alkali (2 wk) or acid (5-7 days) loading on plasma electrolytes, acid-base balance, and insulin sensitivity in either sham control rats, 2/3 nephrectomized rats, or 5/6 nephrectomized rats. Rats with 5/6 nephrectomy had the greatest response to insulin followed by rats with 2/3 nephrectomy and sham control rats. We found that treatment with 0.1 M sodium bicarbonate solution in drinking water had no effect on insulin sensitivity. Acid loading with 0.1 M ammonium chloride resulted in significant reductions in pH and plasma bicarbonate. However, acidosis did not significantly impair insulin sensitivity. Similar effects were observed in Zucker obese rats with 5/6 nephrectomy. The effect of renal mass reduction on insulin sensitivity could not be explained by reduced insulin clearance or increased plasma insulin levels. We found that renal mass reduction alone increases sensitivity to exogenous insulin in rats and that this is not acutely reversed by the development of acidosis.NEW & NOTEWORTHY Impairments in insulin sensitivity can occur in patients with chronic kidney disease, and previous work has suggested that metabolic acidosis may be the underlying cause. Our study investigated the effect of acid or alkali loading on insulin sensitivity in a rodent model of chronic kidney disease. We found that renal mass reduction increases the blood glucose response to insulin and that this is not acutely reversed by the development of acidosis.


Assuntos
Insulina/sangue , Insulina/farmacologia , Rim/patologia , Insuficiência Renal Crônica/etiologia , Insuficiência Renal Crônica/metabolismo , Equilíbrio Ácido-Base , Animais , Creatinina , Teste de Tolerância a Glucose , Resistência à Insulina , Nefrectomia , Obesidade , Tamanho do Órgão , Ratos , Ratos Sprague-Dawley , Ratos Zucker , Insuficiência Renal Crônica/patologia , Bicarbonato de Sódio/farmacologia , Cloreto de Sódio
7.
Am J Physiol Renal Physiol ; 319(6): F1090-F1104, 2020 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-33166183

RESUMO

Sodium bicarbonate (NaHCO3) has been recognized as a possible therapy to target chronic kidney disease (CKD) progression. Several small clinical trials have demonstrated that supplementation with NaHCO3 or other alkalizing agents slows renal functional decline in patients with CKD. While the benefits of NaHCO3 treatment have been thought to result from restoring pH homeostasis, a number of studies have now indicated that NaHCO3 or other alkalis may provide benefit regardless of the presence of metabolic acidosis. These data have raised questions as to how NaHCO3 protects the kidneys. To date, the physiological mechanism(s) that mediates the reported protective effect of NaHCO3 in CKD remain unclear. In this review, we first examine the evidence from clinical trials in support of a beneficial effect of NaHCO3 and other alkali in slowing kidney disease progression and their relationship to acid-base status. Then, we discuss the physiological pathways that have been proposed to underlie these renoprotective effects and highlight strengths and weaknesses in the data supporting each pathway. Finally, we discuss how answering key questions regarding the physiological mechanism(s) mediating the beneficial actions of NaHCO3 therapy in CKD is likely to be important in the design of future clinical trials. We conclude that basic research in animal models is likely to be critical in identifying the physiological mechanisms underlying the benefits of NaHCO3 treatment in CKD. Gaining an understanding of these pathways may lead to the improved implementation of NaHCO3 as a therapy in CKD and perhaps other disease states.


Assuntos
Equilíbrio Ácido-Base/efeitos dos fármacos , Acidose/tratamento farmacológico , Álcalis/uso terapêutico , Rim/efeitos dos fármacos , Insuficiência Renal Crônica/tratamento farmacológico , Bicarbonato de Sódio/uso terapêutico , Acidose/metabolismo , Acidose/fisiopatologia , Álcalis/efeitos adversos , Taxa de Filtração Glomerular/efeitos dos fármacos , Humanos , Concentração de Íons de Hidrogênio , Rim/metabolismo , Rim/fisiopatologia , Insuficiência Renal Crônica/metabolismo , Insuficiência Renal Crônica/fisiopatologia , Bicarbonato de Sódio/efeitos adversos , Resultado do Tratamento
8.
Am J Physiol Renal Physiol ; 319(3): F447-F457, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32686518

RESUMO

Noninvasive determination of the severity of parenchymal injury in acute kidney injury remains challenging. Edema is an early pathological process following injury, which may correlate with changes in kidney volume. The goal of the present study was to test the hypothesis that "increases in kidney volume measured in vivo using ultrasound correlate with the degree of renal parenchymal injury." Ischemia-reperfusion (IR) of varying length was used to produce graded tissue injury. We first determined 1) whether regional kidney volume in rats varied with the severity (0, 15, 30, and 45 min) of warm bilateral IR and 2) whether this correlated with tubular injury score. We then determined whether these changes could be measured in vivo using three-dimensional ultrasound. Finally, we evaluated cumulative changes in kidney volume up to 14 days post-IR in rats to determine whether changes in renal volume were predictive of latent tubular injury following recovery of filtration. Experiments concluded that noninvasive ultrasound measurements of change in kidney volume over 2 wk are predictive of tubular injury following IR even in animals in which plasma creatinine was not elevated. We conclude that ultrasound measurements of volume are a sensitive, noninvasive marker of tissue injury in rats and that the use of three-dimensional ultrasound measurements may provide useful information regarding the timing, severity, and recovery from renal tissue injury in experimental studies.


Assuntos
Injúria Renal Aguda/diagnóstico por imagem , Injúria Renal Aguda/patologia , Rim/patologia , Traumatismo por Reperfusão/patologia , Ultrassonografia , Animais , Feminino , Masculino , Ratos , Ratos Endogâmicos SHR , Ratos Sprague-Dawley
9.
Clin Sci (Lond) ; 134(13): 1751-1762, 2020 07 17.
Artigo em Inglês | MEDLINE | ID: mdl-32608481

RESUMO

Renal ischemia is the most common cause of acute kidney injury. Damage-associated molecular patterns (DAMPs) initiate an inflammatory response and contribute to ischemia-reperfusion (IR) injury in males, yet the contribution of DAMPs to IR injury in females is unknown. The goal of the current study was to test the hypothesis that males have greater increases in the DAMP high-mobility group box 1 (HMGB1), worsening injury compared with females. Thirteen-week-old male and female spontaneously hypertensive rats (SHR) were subjected to sham or 45-min warm bilateral ischemia followed by 24 h of reperfusion before measurement of HMGB1 and renal function. Additional SHR were pre-treated with control (IgG) or HMGB1 neutralizing antibody (300 µg/rat) 1 h prior to renal ischemia. Blood, urine and kidneys were harvested 24 h post-IR for histological and Western blot analyses. Initial studies confirmed that IR resulted in greater increases in renal HMGB1 in male SHR compared with females. Greater renal HMGB1 in male SHR post-IR resulted in greater increases in serum TNF-α and renal IL-1ß, neutrophil infiltration and tubular cell death. Neutralization of HMGB1 attenuated IR-induced increases in plasma creatinine, blood urea nitrogen (BUN), inflammation, tubular damage and tubular cell death only in male SHR. In conclusion, our data demonstrate that there is a sex difference in the contribution of HMGB1 to IR-induced injury, where males exhibit greater increases in HMGB1-mediated renal injury in response to IR compared with females.


Assuntos
Injúria Renal Aguda/metabolismo , Proteína HMGB1/metabolismo , Isquemia/metabolismo , Rim/irrigação sanguínea , Traumatismo por Reperfusão/metabolismo , Injúria Renal Aguda/genética , Animais , Creatinina/sangue , Feminino , Proteína HMGB1/genética , Humanos , Interleucina-1beta/genética , Interleucina-1beta/imunologia , Isquemia/genética , Rim/metabolismo , Masculino , Ratos , Ratos Endogâmicos SHR , Traumatismo por Reperfusão/genética , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia
10.
J Immunol ; 200(10): 3568-3586, 2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29661827

RESUMO

We tested the hypothesis that oral NaHCO3 intake stimulates splenic anti-inflammatory pathways. Following oral NaHCO3 loading, macrophage polarization was shifted from predominantly M1 (inflammatory) to M2 (regulatory) phenotypes, and FOXP3+CD4+ T-lymphocytes increased in the spleen, blood, and kidneys of rats. Similar anti-inflammatory changes in macrophage polarization were observed in the blood of human subjects following NaHCO3 ingestion. Surprisingly, we found that gentle manipulation to visualize the spleen at midline during surgical laparotomy (sham splenectomy) was sufficient to abolish the response in rats and resulted in hypertrophy/hyperplasia of the capsular mesothelial cells. Thin collagenous connections lined by mesothelial cells were found to connect to the capsular mesothelium. Mesothelial cells in these connections stained positive for the pan-neuronal marker PGP9.5 and acetylcholine esterase and contained many ultrastructural elements, which visually resembled neuronal structures. Both disruption of the fragile mesothelial connections or transection of the vagal nerves resulted in the loss of capsular mesothelial acetylcholine esterase staining and reduced splenic mass. Our data indicate that oral NaHCO3 activates a splenic anti-inflammatory pathway and provides evidence that the signals that mediate this response are transmitted to the spleen via a novel neuronal-like function of mesothelial cells.


Assuntos
Acetilcolina/metabolismo , Anti-Inflamatórios/farmacologia , Colinérgicos/farmacologia , Epitélio/efeitos dos fármacos , Bicarbonato de Sódio/farmacologia , Baço/efeitos dos fármacos , Adulto , Animais , Biomarcadores/metabolismo , Epitélio/metabolismo , Feminino , Humanos , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Masculino , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Ratos , Ratos Sprague-Dawley , Baço/metabolismo , Nervo Vago/efeitos dos fármacos , Nervo Vago/metabolismo
11.
Kidney Int ; 95(6): 1359-1372, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30905471

RESUMO

In mice, the initial stage of nephrotoxic serum-induced nephritis (NTN) mimics antibody-mediated human glomerulonephritis. Local immune deposits generate tumor necrosis factor (TNF), which activates pro-inflammatory pathways in glomerular endothelial cells (GECs) and podocytes. Because TNF receptors mediate antibacterial defense, existing anti-TNF therapies can promote infection; however, we have previously demonstrated that different functional domains of TNF may have opposing effects. The TIP peptide mimics the lectin-like domain of TNF, and has been shown to blunt inflammation in acute lung injury without impairing TNF receptor-mediated antibacterial activity. We evaluated the impact of TIP peptide in NTN. Intraperitoneal administration of TIP peptide reduced inflammation, proteinuria, and blood urea nitrogen. The protective effect was blocked by the cyclooxygenase inhibitor indomethacin, indicating involvement of prostaglandins. Targeted glomerular delivery of TIP peptide improved pathology in moderate NTN and reduced mortality in severe NTN, indicating a local protective effect. We show that TIP peptide activates the epithelial sodium channel(ENaC), which is expressed by GEC, upon binding to the channel's α subunit. In vitro, TNF treatment of GEC activated pro-inflammatory pathways and decreased the generation of prostaglandin E2 and nitric oxide, which promote recovery from NTN. TIP peptide counteracted these effects. Despite the capacity of TIP peptide to activate ENaC, it did not increase mean arterial blood pressure in mice. In the later autologous phase of NTN, TIP peptide blunted the infiltration of Th17 cells. By countering the deleterious effects of TNF through direct actions in GEC, TIP peptide could provide a novel strategy to treat glomerular inflammation.


Assuntos
Canais Epiteliais de Sódio/metabolismo , Glomerulonefrite/tratamento farmacológico , Glomérulos Renais/efeitos dos fármacos , Peptídeos Cíclicos/administração & dosagem , Proteinúria/tratamento farmacológico , Animais , Nitrogênio da Ureia Sanguínea , Linhagem Celular , Dinoprostona/metabolismo , Modelos Animais de Doenças , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/patologia , Feminino , Glomerulonefrite/sangue , Glomerulonefrite/imunologia , Glomerulonefrite/patologia , Humanos , Injeções Intraperitoneais , Glomérulos Renais/citologia , Glomérulos Renais/patologia , Camundongos , Óxido Nítrico/metabolismo , Técnicas de Patch-Clamp , Cultura Primária de Células , Proteinúria/sangue , Proteinúria/imunologia , Proteinúria/patologia , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/imunologia , Células Th17/efeitos dos fármacos , Células Th17/imunologia , Fator de Necrose Tumoral alfa/imunologia , Fator de Necrose Tumoral alfa/metabolismo
12.
Pharmacol Res ; 141: 236-248, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30616018

RESUMO

Much research now indicates that vagal nerve stimulation results in a systemic reduction in inflammatory cytokine production and an increase in anti-inflammatory cell populations that originates from the spleen. Termed the 'cholinergic anti-inflammatory pathway', therapeutic activation of this innate physiological response holds enormous promise for the treatment of inflammatory disease. Much controversy remains however, regarding the underlying physiological pathways mediating this response. This controversy is anchored in the fact that the vagal nerve itself does not innervate the spleen. Recent research from our own laboratory indicating that oral intake of sodium bicarbonate stimulates splenic anti-inflammatory pathways, and that this effect may require transmission of signals to the spleen through the mesothelium, provide new insight into the physiological pathways mediating the cholinergic anti-inflammatory pathway. In this review, we examine proposed models of the cholinergic anti-inflammatory pathway and attempt to frame our recent results in relation to these hypotheses. Following this discussion, we then provide an alternative model of the cholinergic anti-inflammatory pathway which is consistent both with our recent findings and the published literature. We then discuss experimental approaches that may be useful to delineate these hypotheses. We believe the outcome of these experiments will be critical in identifying the most appropriate methods to harness the therapeutic potential of the cholinergic anti-inflammatory pathway for the treatment of disease and may also shed light on the etiology of other pathologies, such as idiopathic fibrosis.


Assuntos
Epitélio/fisiologia , Inflamação/fisiopatologia , Neuroimunomodulação/fisiologia , Acetilcolina/fisiologia , Animais , Humanos , Rim/fisiologia , Baço/inervação , Linfócitos T/fisiologia , Nervo Vago/fisiologia
13.
Kidney Int ; 94(2): 280-291, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29731111

RESUMO

To investigate the role of protein kinase C-α (PKC-α) in glomerulonephritis, the capacity of PKC-α inhibition to reverse the course of established nephrotoxic nephritis (NTN) was evaluated. Nephritis was induced by a single injection of nephrotoxic serum and after its onset, a PKC-α inhibitor was administered either systemically or by targeted glomerular delivery. By day seven, all mice with NTN had severe nephritis, whereas mice that received PKC-α inhibitors in either form had minimal evidence of disease. To further understand the underlying mechanism, label-free shotgun proteomic analysis of the kidney cortexes were performed, using quantitative mass spectrometry. Ingenuity pathway analysis revealed 157 differentially expressed proteins and mitochondrial dysfunction as the most modulated pathway. Functional protein groups most affected by NTN were mitochondrial proteins associated with respiratory processes. These proteins were down-regulated in the mice with NTN, while their expression was restored with PKC-α inhibition. This suggests a role for proteins that regulate oxidative phosphorylation in recovery. In cultured glomerular endothelial cells, nephrotoxic serum caused a decrease in mitochondrial respiration and membrane potential, mitochondrial morphologic changes and an increase in glycolytic lactic acid production; all normalized by PKC-α inhibition. Thus, PKC-α has a critical role in NTN progression, and the results implicate mitochondrial processes through restoring oxidative phosphorylation, as an essential mechanism underlying recovery. Importantly, our study provides additional support for targeted therapy to glomeruli to reverse the course of progressive disease.


Assuntos
Glomerulonefrite/tratamento farmacológico , Proteína Quinase C-alfa/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Animais , Anticorpos Monoclonais/imunologia , Autoantígenos/imunologia , Colágeno Tipo IV/imunologia , Modelos Animais de Doenças , Sistemas de Liberação de Medicamentos/métodos , Feminino , Glomerulonefrite/imunologia , Glomerulonefrite/patologia , Humanos , Hibridomas , Soros Imunes/administração & dosagem , Soros Imunes/imunologia , Fragmentos de Imunoglobulinas/imunologia , Imunoglobulina G/imunologia , Glomérulos Renais/efeitos dos fármacos , Glomérulos Renais/imunologia , Glomérulos Renais/patologia , Camundongos , Camundongos Endogâmicos C57BL , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/imunologia , Mitocôndrias/metabolismo , Fosforilação Oxidativa/efeitos dos fármacos , Proteína Quinase C-alfa/imunologia , Proteína Quinase C-alfa/metabolismo , Inibidores de Proteínas Quinases/imunologia , Inibidores de Proteínas Quinases/uso terapêutico , Resultado do Tratamento
14.
Stem Cells ; 35(3): 666-678, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27739139

RESUMO

Despite the high prevalence and major negative impact of uterine fibroids (UFs) on women's health, their pathogenesis remains largely unknown. While tumor-initiating cells have been previously isolated from UFs, the cell of origin for these tumors in normal myometrium has not been identified. We isolated cells with Stro1/CD44 surface markers from normal myometrium expressing stem cell markers Oct-4/c-kit/nanog that exhibited the properties of myometrial stem/progenitor-like cells (MSCs). Using a murine model for UFs, we showed that the cervix was a hypoxic "niche" and primary site (96%) for fibroid development in these animals. The pool size of these MSCs also responded to environmental cues, contracting with age and expanding in response to developmental environmental exposures that promote fibroid development. Translating these findings to women, the number of MSCs in unaffected human myometrium correlated with risk for developing UFs. Caucasian (CC) women with fibroids had increased numbers of MSCs relative to CC women without fibroids, and African-American (AA) women at highest risk for these tumors had the highest number of MSCs: AA-with fibroids > CC-with fibroids > AA-without fibroids > CC-without fibroids. These data identify Stro1+ /CD44+ MSCs as MSC/progenitor cell for UFs, and a target for ethnic and environmental factors that increase UF risk. Stem Cells 2017;35:666-678.


Assuntos
Carcinogênese/patologia , Compartimento Celular , Disruptores Endócrinos/toxicidade , Leiomioma/patologia , Miométrio/patologia , Envelhecimento , Animais , Antígenos de Superfície/metabolismo , Biomarcadores Tumorais/metabolismo , Carcinogênese/efeitos dos fármacos , Contagem de Células , Exposição Ambiental , Feminino , Hormônios/farmacologia , Humanos , Receptores de Hialuronatos/metabolismo , Camundongos Endogâmicos NOD , Camundongos SCID , Oxigênio/farmacologia , Ratos , Fatores de Risco , Esteroides/farmacologia , Neoplasias Uterinas/patologia
15.
Clin Sci (Lond) ; 132(11): 1179-1197, 2018 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-29650676

RESUMO

Sodium bicarbonate (NaHCO3) slows the decline in kidney function in patients with chronic kidney disease (CKD), yet the mechanisms mediating this effect remain unclear. The Dahl salt-sensitive (SS) rat develops hypertension and progressive renal injury when fed a high salt diet; however, the effect of alkali loading on kidney injury has never been investigated in this model. We hypothesized that NaHCO3 protects from the development of renal injury in Dahl salt-sensitive rats via luminal alkalization which limits the formation of tubular casts, which are a prominent pathological feature in this model. To examine this hypothesis, we determined blood pressure and renal injury responses in Dahl SS rats drinking vehicle (0.1 M NaCl) or NaHCO3 (0.1 M) solutions as well as in Dahl SS rats lacking the voltage-gated proton channel (Hv1). We found that oral NaHCO3 reduced tubular NH4+ production, tubular cast formation, and interstitial fibrosis in rats fed a high salt diet for 2 weeks. This effect was independent of changes in blood pressure, glomerular injury, or proteinuria and did not associate with changes in renal inflammatory status. We found that null mutation of Hv1 also limited cast formation in Dahl SS rats independent of proteinuria or glomerular injury. As Hv1 is localized to the luminal membrane of TAL, our data suggest that alkalization of the luminal fluid within this segment limits cast formation in this model. Reduced cast formation, secondary to luminal alkalization within TAL segments may mediate some of the protective effects of alkali loading observed in CKD patients.


Assuntos
Glomerulosclerose Segmentar e Focal/prevenção & controle , Túbulos Renais/patologia , Proteinúria/prevenção & controle , Bicarbonato de Sódio/uso terapêutico , Ácidos/urina , Animais , Glicemia/metabolismo , Modelos Animais de Doenças , Fibrose , Glomerulosclerose Segmentar e Focal/etiologia , Glomerulosclerose Segmentar e Focal/metabolismo , Hemodinâmica/efeitos dos fármacos , Concentração de Íons de Hidrogênio/efeitos dos fármacos , Canais Iônicos/deficiência , Canais Iônicos/genética , Canais Iônicos/fisiologia , Masculino , Proteinúria/metabolismo , Ratos Endogâmicos Dahl , Ratos Mutantes , Bicarbonato de Sódio/farmacologia , Cloreto de Sódio na Dieta/farmacologia , Cloreto de Sódio na Dieta/toxicidade
16.
Am J Physiol Renal Physiol ; 313(5): F1097-F1105, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28794065

RESUMO

Recent evidence suggests that a greater density of pericytes in renal cadaveric allografts is associated with better recovery following transplant. The physiological mechanism(s) through which pericyte density may be beneficial is not well understood. The goal of this study was to test the hypothesis that lower medullary pericyte density is associated with greater renal injury following ischemia reperfusion (IR) in a rat model, providing a basis for future studies to better understand pericytes in a pathological environment. To test our hypothesis, we determined the association between medullary pericyte density and renal injury in spontaneously hypertensive rats (SHR) following 45 min of warm bilateral IR. We found that there was a significant negative relationship between pericyte density and plasma creatinine (slope = -0.03, P = 0.02) and blood urea nitrogen (slope = -0.5, P = 0.01) in female but not male SHR. Pericyte density was negatively associated with medullary peritubular capillary (PT) congestion in both sexes following IR (male: slope = -0.04, P = 0.009; female: slope = -0.03, P = 0.0001). To further test this relationship, we used a previously reported method to reduce pericyte density in SHR. Medullary erythrocyte congestion in vasa recta (VR) and PT significantly increased following IR in both sexes when pericyte density was pharmacologically decreased (VR: P = 0.03; PT: P = 0.03). Our data support the hypothesis that pericyte density is negatively associated with the development of IR injury in SHR, which may be mediated by erythrocyte congestion in the medullary vasculature.


Assuntos
Medula Renal/irrigação sanguínea , Pericitos/fisiologia , Traumatismo por Reperfusão/fisiopatologia , Animais , Capilares/fisiopatologia , Feminino , Rim/irrigação sanguínea , Masculino , Ratos , Ratos Endogâmicos SHR , Circulação Renal/fisiologia
17.
Am J Physiol Regul Integr Comp Physiol ; 310(8): R679-90, 2016 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-26843580

RESUMO

Hv1 is a voltage-gated proton channel highly expressed in phagocytic cells, where it participates in the NADPH oxidase-dependent respiratory burst. We have recently identified Hv1 as a novel renal channel, expressed in the renal medullary thick ascending limb that appears to importantly contribute to the pathogenesis of renal hypertensive injury in the Dahl salt-sensitive rat model. The purpose of this review is to describe the experimental approaches that we have undertaken to identify the source of excess reactive oxygen species production in the renal outer medulla of Dahl salt-sensitive rats and the resulting evidence that the voltage-gated proton channel Hv1 mediates augmented superoxide production and contributes to renal medullary oxidative stress and renal injury. In addition, we will attempt to point out areas of current controversy, as well as propose areas in which further experimental studies are likely to move the field forward. The content of the following review was presented as part of the Water and Electrolyte Homeostasis Section New Investigator Award talk at Experimental Biology 2014.


Assuntos
Hipertensão/etiologia , Canais Iônicos/metabolismo , Nefropatias/etiologia , Rim/metabolismo , Cloreto de Sódio na Dieta , Animais , Distinções e Prêmios , Pressão Sanguínea , Modelos Animais de Doenças , Humanos , Hipertensão/metabolismo , Hipertensão/patologia , Hipertensão/fisiopatologia , Rim/patologia , Rim/fisiopatologia , Nefropatias/metabolismo , Nefropatias/patologia , Nefropatias/fisiopatologia , Estresse Oxidativo , Prótons , Ratos Endogâmicos Dahl , Espécies Reativas de Oxigênio/metabolismo , Fatores de Risco , Transdução de Sinais
18.
Am J Physiol Renal Physiol ; 308(3): F179-97, 2015 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-25354941

RESUMO

The physiological evidence linking the production of superoxide, hydrogen peroxide, and nitric oxide in the renal medullary thick ascending limb of Henle (mTAL) to regulation of medullary blood flow, sodium homeostasis, and long-term control of blood pressure is summarized in this review. Data obtained largely from rats indicate that experimentally induced elevations of either superoxide or hydrogen peroxide in the renal medulla result in reduction of medullary blood flow, enhanced Na(+) reabsorption, and hypertension. A shift in the redox balance between nitric oxide and reactive oxygen species (ROS) is found to occur naturally in the Dahl salt-sensitive (SS) rat model, where selective reduction of ROS production in the renal medulla reduces salt-induced hypertension. Excess medullary production of ROS in SS rats emanates from the medullary thick ascending limbs of Henle [from both the mitochondria and membrane NAD(P)H oxidases] in response to increased delivery and reabsorption of excess sodium and water. There is evidence that ROS and perhaps other mediators such as ATP diffuse from the mTAL to surrounding vasa recta capillaries, resulting in medullary ischemia, which thereby contributes to hypertension.


Assuntos
Hipotensão/metabolismo , Medula Renal/irrigação sanguínea , NADPH Oxidases/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Sódio/metabolismo , Animais , Humanos , Óxido Nítrico/metabolismo
19.
Am J Physiol Renal Physiol ; 308(7): F706-12, 2015 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-25503730

RESUMO

Recent studies suggest that sex of the animal and T cell impact ANG II hypertension in Rag(-/-) mice, with females being protected relative to males. This study tested the hypothesis that ANG II results in greater increases in proinflammatory T cells and cytokines in males than in females. Male and female Sprague-Dawley (SD) rats, aged 12 wk, were treated with vehicle or ANG II (200 ng·kg(-1)·min(-1)) for 2 wk. Renal CD4(+) T cells and Tregs were comparable between vehicle-treated males and females, although males expressed more Th17 and IL-17(+) T cells and fewer IL-10(+) T cells than females. ANG II resulted in greater increases in CD4(+) T cells, Th17 cells, and IL-17(+) cells in males; Tregs increased only in females. We previously showed that ANG (1-7) antagonizes ANG II-induced increases in blood pressure in females and ANG (1-7) has been suggested to be anti-inflammatory. Renal ANG (1-7) levels were greater in female SD at baseline and following ANG II infusion. Additional rats were treated with ANG II plus the ANG (1-7)-mas receptor antagonist A-779 (48 µg·kg(-1)·h(-1)) to test the hypothesis that greater ANG (1-7) in females results in more Tregs relative to males. Inhibition of ANG (1-7) did not alter renal T cells in either sex. In conclusion, ANG II induces a sex-specific effect on the renal T cell profile. Males have greater increases in proinflammatory T cells, and females have greater increases in anti-inflammatory Tregs; however, sex differences in the renal T cell profile are not mediated by ANG (1-7).


Assuntos
Angiotensina II/farmacologia , Rim/efeitos dos fármacos , Linfócitos T/efeitos dos fármacos , Animais , Humanos , Hipertensão/imunologia , Hipertensão/fisiopatologia , Interleucina-10/metabolismo , Interleucina-17/metabolismo , Rim/fisiopatologia , Masculino , Ratos Sprague-Dawley , Caracteres Sexuais , Linfócitos T/imunologia
20.
Am J Physiol Renal Physiol ; 306(5): F551-60, 2014 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-24431201

RESUMO

We examined how the presence of a fixed level of basal renal O2 consumption (Vo2(basal); O2 used for processes independent of Na(+) transport) confounds the utility of the ratio of Na(+) reabsorption (TNa(+)) to total renal Vo2 (Vo2(total)) as an index of the efficiency of O2 utilization for TNa(+). We performed a systematic review and additional experiments in anesthetized rabbits to obtain the best possible estimate of the fractional contribution of Vo2(basal) to Vo2(total) under physiological conditions (basal percent renal Vo2). Estimates of basal percent renal Vo2 from 24 studies varied from 0% to 81.5%. Basal percent renal Vo2 varied with the fractional excretion of Na(+) (FENa(+)) in the 14 studies in which FENa(+) was measured under control conditions. Linear regression analysis predicted a basal percent renal Vo2 of 12.7-16.5% when FENa(+) = 1% (r(2) = 0.48, P = 0.001). Experimentally induced changes in TNa(+) altered TNa(+)/Vo2(total) in a manner consistent with theoretical predictions. We conclude that, because Vo2(basal) represents a significant proportion of Vo2(total), TNa(+)/Vo2(total) can change markedly when TNa(+) itself changes. Therefore, caution should be taken when TNa(+)/Vo2(total) is interpreted as a measure of the efficiency of O2 utilization for TNa(+), particularly under experimental conditions where TNa(+) or Vo2(total) changes.


Assuntos
Rim/metabolismo , Consumo de Oxigênio/fisiologia , Oxigênio/metabolismo , Sódio/metabolismo , Animais , Masculino , Coelhos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA