RESUMO
Water availability acts as the most stringent constraint for life on Earth. Thus, understanding the water relations of microbial extremophiles is imperative to our ability to increase agricultural productivity (e.g., by enhancing the processing and turnover of dead organic matter in soils of arid regions), reduce human exposure to mycotoxins in buildings and our food-supply chain, prevent the spoilage of foods/animal feeds, books, museum specimens and artworks and better control microbiology of industrial fermentations. Only a small number of microbial systems can retain activity at <0.710 water activity (ISME J 2015 9: 1333-1351). It has long-been considered that the most resilient of these is Xeromyces bisporus, which inhabits sugar-rich substrates (Appl Environ Microbiol 1968 16: 1853-1858). The current study focused on germination of Aspergillus penicillioides, a xerophile which is also able to grow under low humidity and saline conditions. Investigations of germination differed from those reported earlier: firstly, aerially borne conidia were harvested, and then used for inoculations, in their dry condition; secondly, cultures were incubated at 24°C, i.e. below optimum germination temperature, to minimize the possibility of water loss from the substrate; thirdly, cultures remained sealed throughout the 73-day study period (microscopic examination was carried out directly 48 through the Petri plate lid); fourthly, the germination parameters determined were: rates and extent of conidial swelling, production of differentiated germination-structures and septate germlings, and subsequent development of mycelium and/or sporulation; fifthly, assessments were carried out over a range of water-activity values and time points to obtain a complete profile of the germination process. Conidia swelled, formed differentiated germination-structures and then produced septate germlings at a water-activity of just 0.585 (≡58.5% relative humidity), outside the currently understood thermodynamic window for life. Furthermore, analyses of these data suggest a theoretical water-activity minimum of 0.565 for germination of A. penicilliodes. In relation to astrobiology, these findings have an application in understanding the limits to life in extraterrestrial environments. In light of current plans for exploration missions to Mars and other places, and the need to safeguard martian scientific sites and potential resources (including water) for future human habitation, a knowledge-based and effective policy for planetary protection is essential. As it is, Mars-bound spacecraft may frequently be contaminated with aspergilli (including A. penicillioides) and other organisms which, when transported to other planetary bodies, pose a contamination risk. In crafting countermeasures to offset this, it is important to know as precisely as possible the capabilities of these potential interplanetary visitors.
Assuntos
Aspergillus/crescimento & desenvolvimento , Esporos Fúngicos/crescimento & desenvolvimento , Água/análise , Aspergillus/citologia , Aspergillus/metabolismo , Divisão Celular , Ecossistema , Exobiologia , Meio Ambiente Extraterreno , Umidade , Micélio/crescimento & desenvolvimento , Micélio/metabolismo , Temperatura , Termodinâmica , Água/metabolismoRESUMO
Anti-microbial resistance (AMR) is currently one of the most serious threats to global human health and, appropriately, research to tackle AMR garnishes significant investment and extensive attention from the scientific community. However, most of this effort focuses on antibiotics, and research into anti-fungal resistance (AFR) is vastly under-represented in comparison. Given the growing number of vulnerable, immunocompromised individuals, as well as the positive impact global warming has on fungal growth, there is an immediate urgency to tackle fungal disease, and the disturbing rise in AFR. Chromatin structure and gene expression regulation play pivotal roles in the adaptation of fungal species to anti-fungal stress, suggesting a potential therapeutic avenue to tackle AFR. In this review we discuss both the genetic and epigenetic mechanisms by which chromatin structure can dictate AFR mechanisms and will present evidence of how pathogenic yeast, specifically from the Candida genus, modify chromatin structure to promote survival in the presence of anti-fungal drugs. We also discuss the mechanisms by which anti-chromatin therapy, specifically lysine deacetylase inhibitors, influence the acquisition and phenotypic expression of AFR in Candida spp. and their potential as effective adjuvants to mitigate against AFR.
RESUMO
Saccharomyces cerevisiae (budding yeast) and Schizosaccharomyces pombe (fission yeast) are two of the most recognised and well-studied model systems for epigenetic regulation and the inheritance of chromatin states. Their silent loci serve as a proxy for heterochromatic chromatin in higher eukaryotes, and as such both species have provided a wealth of information on the mechanisms behind the establishment and maintenance of epigenetic states, not only in yeast, but in higher eukaryotes. This review focuses specifically on the role of histone modifications in governing telomeric silencing in S. cerevisiae and centromeric silencing in S. pombe as examples of genetic loci that exemplify epigenetic inheritance. We discuss the recent advancements that for the first time provide a mechanistic understanding of how heterochromatin, dictated by histone modifications specifically, is preserved during S-phase. We also discuss the current state of our understanding of yeast nucleosome dynamics during DNA replication, an essential component in delineating the contribution of histone modifications to epigenetic inheritance.
Assuntos
Epigênese Genética , Proteínas Fúngicas/genética , Regulação Fúngica da Expressão Gênica , Código das Histonas/genética , Saccharomyces cerevisiae/genética , Schizosaccharomyces/genética , Proteínas Fúngicas/metabolismo , Inativação Gênica , Heterocromatina/genética , Heterocromatina/metabolismo , Nucleossomos/genética , Nucleossomos/metabolismo , Saccharomyces cerevisiae/metabolismo , Schizosaccharomyces/metabolismo , Telômero/genéticaRESUMO
NaCl-saturated brines such as saltern crystalliser ponds, inland salt lakes, deep-sea brines and liquids-of-deliquescence on halite are commonly regarded as a paradigm for the limit of life on Earth. There are, however, other habitats that are thermodynamically more extreme. Typically, NaCl-saturated environments contain all domains of life and perform complete biogeochemical cycling. Despite their reduced water activity, â¼0.755 at 5 M NaCl, some halophiles belonging to the Archaea and Bacteria exhibit optimum growth/metabolism in these brines. Furthermore, the recognised water-activity limit for microbial function, â¼0.585 for some strains of fungi, lies far below 0.755. Other biophysical constraints on the microbial biosphere (temperatures of >121°C; pH > 12; and high chaotropicity; e.g. ethanol at >18.9% w/v (24% v/v) and MgCl2 at >3.03 M) can prevent any cellular metabolism or ecosystem function. By contrast, NaCl-saturated environments contain biomass-dense, metabolically diverse, highly active and complex microbial ecosystems; and this underscores their moderate character. Here, we survey the evidence that NaCl-saturated brines are biologically permissive, fertile habitats that are thermodynamically mid-range rather than extreme. Indeed, were NaCl sufficiently soluble, some halophiles might grow at concentrations of up to 8 M. It may be that the finite solubility of NaCl has stabilised the genetic composition of halophile populations and limited the action of natural selection in driving halophile evolution towards greater xerophilicity. Further implications are considered for the origin(s) of life and other aspects of astrobiology.