Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
J Environ Manage ; 329: 116976, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36535142

RESUMO

This work aims to assess the potential biogas resource of by-products from the production of distilled spirits at 9 operational distilleries in 7 countries. An additional objective was the calculation of the energy resource and Scope 1 greenhouse gas (GHG) emission savings from the use of 21 by-products from the distilleries as a feedstock for anaerobic digestion (AD). To present a holistic perspective on the integration of AD with distilleries, an overview of additional criteria to be considered was provided. The biochemical methane potential (BMP) of the by-products associated with a selection of distilled spirits was experimentally determined. The BMP ranged from 161 L methane per kg volatile solid (LCH4/kgVS) to 589 LCH4/kgVS with an average value of 332 LCH4/kgVS. Biogas could reduce distillery fossil fuel demand by 49% when produced from un-processed by-products, by 66% when produced from a mixture of separated by-products, by 16% when produced from concentrated by-products and by 13% when produced from liquid by-products. The average Scope 1 GHG emission saving when using un-processed by-products was 52%, a mix of separated by-products allowed for a reduction of 66%, liquid by-products achieved an average reduction of 14%, and the use of concentrated by-products reduced GHG emissions by 17% on average. When evaluating which distilleries are "of most interest" for the integration of AD, other criteria to be considered include: by-product properties, the size of the AD facility required, the quantity of digestate produced, and the location of the distilleries in terms of both land availability to construct the AD facility and the proximity to land on which to spread digestate.


Assuntos
Biocombustíveis , Metano , Anaerobiose , Energia Renovável
2.
J Environ Manage ; 317: 115312, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35751231

RESUMO

Increased biogas production from increasing numbers of anaerobic digestion (AD) facilities has increased the mass of digestate applied to agricultural land close to AD plants and has led to an oversupply in some regions. This necessitates long distance digestate transportation accompanied by economic, environmental, and social drawbacks. This work assesses the performance of three different digestate management options (MOs); land application of whole digestate (MO1), digestate separation (MO2), and digestate separation and evaporation (MO3), combined with centralised or decentralised digestate storage. All MOs required the same landbank area, whilst MO2 and MO3 reduced digestate management costs by 9% and 37% (if recovered heat is used) respectively. GHG emissions from MO2 were 41% lower than MO1 if renewable electricity was used. MO3 reduced GHG emissions by 63% compared to MO1, if renewable electricity and recovered heat were used. MO2 required the same centralised digestate storage volume as MO1 while MO3 required 44% of the centralised storage volume. Centralised digestate storage required a maximum of 79 days for digestate transportation (33 trucks/day, 20 m3 capacity) to land for MO1 and MO2, and 35 days for MO3. Decentralised digestate storage required 63 storage tanks and 15 trucks/day for MO1, 69 tanks and 15 trucks/day for MO2, and 68 tanks and 7 trucks/day for MO3. Tank size ranged from 500 m3 to 20,000 m3. MO3 combined with decentralised storage could reduce the cost and GHG emissions (if recovered energy is used), vehicle movements, and the number of storage tanks required for digestate management.


Assuntos
Agricultura , Biocombustíveis , Anaerobiose
3.
Heliyon ; 10(5): e26637, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38444498

RESUMO

Hydrogen will play an indispensable role as both an energy vector and as a molecule in essential products in the transition to climate neutrality. However, the optimal sustainable hydrogen production system is not definitive due to challenges in energy conversion efficiency, economic cost, and associated marginal abatement cost. This review summarises and contrasts different sustainable hydrogen production technologies including for their development, potential for improvement, barriers to large-scale industrial application, capital and operating cost, and life-cycle environmental impact. Polymer electrolyte membrane water electrolysis technology shows significant potential for large-scale application in the near-term, with a higher technology readiness level (expected to be 9 by 2030) and a levelized cost of hydrogen expected to be 4.15-6 €/kg H2 in 2030; this equates to a 50% decrease as compared to 2020. The four-step copper-chlorine (Cu-Cl) water thermochemical cycle can perform better in terms of life cycle environmental impact than the three- and five-step Cu-Cl cycle, however, due to system complexity and high capital expenditure, the thermochemical cycle is more suitable for long-term application should the technology develop. Biological conversion technologies (such as photo/dark fermentation) are at a lower technology readiness level, and the system efficiency of some of these pathways such as biophotolysis is low (less than 10%). Biomass gasification may be a more mature technology than some biological conversion pathways owing to its higher system efficiency (40%-50%). Biological conversion systems also have higher costs and as such require significant development to be comparable to hydrogen produced via electrolysis.

4.
ACS Eng Au ; 3(4): 224-234, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37601416

RESUMO

The by-products generated from the whiskey distillation process consist of organic liquids with a high chemical oxygen demand (COD) and residues with a high solid content. Low-carbon strategies that repurpose and valorize such by-products are now imperative to reduce the carbon footprint of the food and beverage industries. The operation of a two-phase anaerobic digester to produce volatile fatty acids (VFAs) and biogas may enable distilleries to transition toward a low-carbon bioeconomy. An example of such a system is a leach bed reactor connected to an expanded granular sludge bed (LBR-EGSB) which was designed, commissioned, and conceptually validated in this paper. Several design improvements progress the LBR-EGSB beyond previous reactor designs. An external gas-liquid-solid separator in the EGSB was used to capture any residual gases produced by the effluent and may reduce the amount of methane slippage and biomass washout. The implementation of a siphon-actuated leachate cup is a low-cost alternative that is less prone to actuation malfunction as compared to electrically actuated solenoid valves in previous reactor designs. Furthermore, replacing fresh water with distillery's liquid by-products as leachate promotes a circular repurpose and reuse philosophy. The system proved to be effective in generating VFAs (10.3 g VFAs L-1Leachate), in EGSB COD removal (96%), and in producing methane-rich biogas (75%vol), which is higher than the values achieved by traditional anaerobic digestion systems. The LBR-EGSB could ultimately provide more by-product valorization and decarbonization opportunities than traditional anaerobic digestion systems for a whiskey distillery.

5.
Bioengineered ; 14(1): 2245991, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37712640

RESUMO

Marginal Abatement Cost Curves compare and assess greenhouse gas mitigation options available to various sectors of the economy. In the Irish agricultural sector, large anaerobic digestion facilities are currently considered a high-cost abatement solution. In prior studies of anaerobic digestion abatement costs, two options were assessed: the generation of heat and electricity from biogas (115 €/tCO2eq) and the production of renewable heat from biomethane (280 €/tCO2eq). Both scenarios encompass single cost values that may not capture the potentially variable nature of such systems. In contrast, prior techno-economic analyses and lifecycle analyses can provide a comparison of the abatement costs of anaerobic digestion systems at a range of scales. This work compares two case studies (based on prior literature) for small and medium-scale on farm anaerobic digestion systems. The small-scale system is set in Ireland with cattle slurry collected in open tanks during the winter, while the medium-scale system is set in the USA with cattle slurry collected periodically indoors all year-round. It was found that the abatement cost can vary between -117 to +79 € per t CO2eq. The key variables that affected the abatement cost were additional revenue streams such as biofertilizer sales, displaced energy savings, and additional incentives and emissions savings within the system boundary. Including only some of these options in the analysis resulted in higher abatement costs being reported. Based on the variation between system topologies and therefore system boundaries, assigning a single mitigation cost to anaerobic digestion systems may not be representative.


The veracity of an abatement cost analysis depends on a clear methodological process.The abatement cost varies based on the processes considered within the system boundary.On-farm digestion abatement costs assessed ranged from -117 to +79 €/tCO2eq.On-farm emissions savings ranged from 609 to 10,358 tCO2eq/yr.Abatement costs reduce when considering the income and emissions savings from co-benefits.


Assuntos
Agricultura , Biocombustíveis , Animais , Bovinos , Fazendas , Anaerobiose , Comércio
6.
Bioresour Technol ; 385: 129364, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37336452

RESUMO

Future energy systems necessitate dispatchable renewable energy to balance electrical grids with high shares of intermittent renewables. Biogas from anaerobic digestion (AD) can generate electricity on-demand. High-rate methanogenic reactors, such as the Upflow Anaerobic Sludge Blanket (UASB), can react quicker to variations in feeding as compared to traditional AD systems. In this study, experimental trials validated the feasibility of operating the UASB in a demand-driven manner. The UASB was operated with leachate produced from a hydrolysis reactor treating grass silage. The UASB demonstrated a high degree of flexibility in responding to variable feeding regimes. The intra-day biogas production rate could be increased by up to 123% under 4 hours in demand-driven operation, without significant deterioration in performance. A model based on kinetic analysis was developed to help align demand-driven operation with the grid. The findings suggest significant opportunities for UASBs to provide positive and negative balance to the power grid.


Assuntos
Esgotos , Eliminação de Resíduos Líquidos , Anaerobiose , Biocombustíveis , Cinética , Reatores Biológicos , Metano
7.
Bioresour Technol ; 383: 129239, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37247792

RESUMO

The valorisation of whiskey by-products was assessed and compared in three anaerobic digestion systems. The systems produced similar methane yields, which could satisfy up to 44% of the thermal energy demand at a distillery. Using methane generated from by-products would displace natural gas and reduce the distillery's carbon footprint. Two-phase systems had higher methane content (ca. 75 %vol) than the traditional system (54 %vol) and furthermore, unlocked opportunities for volatile fatty acid production. The potential value that could be generated from the extraction of butyric acid and caproic acid was approximately €6.76 million for a 50 million litre alcohol facility (0.14 € per litre of whiskey). All three anaerobic digestion systems showed the potential to valorise whiskey by-products and convert current linear distillery production processes into circular repurpose and reuse production processes.


Assuntos
Bebidas Alcoólicas , Reatores Biológicos , Anaerobiose , Álcoois , Metano , Biocombustíveis
8.
Ind Eng Chem Res ; 60(15): 5688-5704, 2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-34276129

RESUMO

The two-step bubble column-photobioreactor photosynthetic biogas upgrading system can enable simultaneous production of biomethane and value-added products from microalgae. However, due to the influence of a large number of variables, including downstream processes and the presence of microalgae, no unanimity has been reached regarding the performance of bubble column reactors in photosynthetic biogas upgrading. To investigate this further, the present work documents in detail, the design and commissioning of a lab-scale bubble column reactor capable of treating up to 16.3 L/h of biogas while being scalable. The performance of the bubble column was assessed at a pH of 9.35 with different algal densities of Spirulina platensis at 20 °C in the presence of light (3-5 klux or 40.5-67.5 µmol m-2 s-1). A liquid/gas flow (L/G) ratio of 0.5 allowed consistent CO2 removal of over 98% irrespective of the algal density or its photosynthetic activity. For lower concentrations of algae, the volumetric O2 concentration in the upgraded biomethane varied between 0.05 and 0.52%, thus providing grid quality biomethane. However, for higher algal concentrations, increased oxygen content in the upgraded biomethane due to both enhanced O2 stripping and the photosynthetic activity of the microalgae as well as clogging and foaming posed severe operational challenges.

9.
iScience ; 24(9): 102998, 2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34522851

RESUMO

Biomethane is suggested as an advanced biofuel for the hard-to-abate sectors such as heavy transport. However, future systems that optimize the resource and production of biomethane have yet to be definitively defined. This paper assesses the opportunity of integrating anaerobic digestion (AD) with three emerging bioelectrochemical technologies in a circular cascading bioeconomy, including for power-to-gas AD (P2G-AD), microbial electrolysis cell AD (MEC-AD), and AD microbial electrosynthesis (AD-MES). The mass and energy flow of the three bioelectrochemical systems are compared with the conventional AD amine scrubber system depending on the availability of renewable electricity. An energy balance assessment indicates that P2G-AD, MEC-AD, and AD-MES circular cascading bioelectrochemical systems gain positive energy outputs by using electricity that would have been curtailed or constrained (equivalent to a primary energy factor of zero). This analysis of technological innovation, aids in the design of future cascading circular biosystems to produce sustainable advanced biofuels.

10.
Bioresour Technol ; 304: 123027, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-32113833

RESUMO

Synergistic opportunities to combine biomethane production via anaerobic digestion whilst cultivating microalgae have been previously suggested in literature. While biomethane is a promising and flexible renewable energy vector, microalgae are increasingly gaining importance as an alternate source of food and/or feed, chemicals and energy for advanced biofuels. However, simultaneously achieving, grid quality biomethane, effective microalgal digestate treatment, high microalgae growth rate, and the most sustainable use of the algal biomass is a major challenge. In this regard, the present paper proposes multiple configurations of an innovative Cascading Algal Biomethane-Biorefinery System (CABBS) using a novel two-step bubble column-photobioreactor photosynthetic biogas upgrading technology. To overcome the limitations in choice of microalgae for optimal system operation, a microalgae composition based biorefinery decision tree has also been conceptualised to maximise profitability. Techno-economic, environmental and practical aspects have been discussed to provide a comprehensive perspective of the proposed systems.


Assuntos
Microalgas , Biocombustíveis , Biomassa , Fotobiorreatores , Fotossíntese
11.
Bioengineered ; 10(1): 604-634, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31679461

RESUMO

The rise in intermittent renewable electricity production presents a global requirement for energy storage. Biological hydrogen methanation (BHM) facilitates wind and solar energy through the storage of otherwise curtailed or constrained electricity in the form of the gaseous energy vector biomethane. Biological methanation in the circular economy involves the reaction of hydrogen - produced during electrolysis - with carbon dioxide in biogas to produce methane (4H2 + CO2 = CH4 + 2H2), typically increasing the methane output of the biogas system by 70%. In this paper, several BHM systems were researched and a compilation of such systems was synthesized, facilitating comparison of key parameters such as methane evolution rate (MER) and retention time. Increased retention times were suggested to be related to less efficient systems with long travel paths for gases through reactors. A significant lack of information on gas-liquid transfer co-efficient was identified.


Assuntos
Biocombustíveis/análise , Hidrogênio/metabolismo , Metano/metabolismo , Reatores Biológicos/microbiologia , Biotecnologia , Dióxido de Carbono/química , Dióxido de Carbono/metabolismo , Hidrogênio/química , Metano/química , Energia Renovável
12.
Biotechnol Adv ; 37(8): 107444, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31476422

RESUMO

Photosynthetic biogas upgrading using microalgae provides a promising alternative to commercial upgrading processes as it allows for carbon capture and re-use, improving the sustainability of the process in a circular economy system. A two-step absorption column-photobioreactor system employing alkaline carbonate solution and flat plate photobioreactors is proposed. Together with process optimisation, the choice of microalgae species is vital to ensure continuous performance with optimal efficiency. In this paper, in addition to critically assessing the system design and operation conditions for optimisation, five criteria are selected for choosing optimal microalgae species for biogas upgrading. These include: ability for mixotrophic growth; high pH tolerance; external carbonic anhydrase activity; high CO2 tolerance; and ease of harvesting. Based on such criteria, five common microalgae species were identified as potential candidates. Of these, Spirulina platensis is deemed the most favourable species. An industrial perspective of the technology further reveals the significant challenges for successful commercial application of microalgal upgrading of biogas, including: a significant land footprint; need for decreasing microalgae solution recirculation rate; and selecting preferable microalgae utilisation pathway.


Assuntos
Microalgas , Biocombustíveis , Biomassa , Dióxido de Carbono , Fotobiorreatores , Fotossíntese
13.
Bioresour Technol ; 196: 301-13, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26253914

RESUMO

Effective biogas production from seaweed necessitates harvest at times of peak quality of biomass and low-loss preservation for year-around supply. Ensiling of five seaweed species and storage up to 90days was investigated as a method to preserve the methane yield potential. Adequate acidification by natural lactic acid fermentation was difficult due to low rapidly fermentable carbohydrate contents, high buffering capacities and low initial numbers of lactic acid bacteria. Nevertheless, products of silage fermentation increased methane yields by up to 28% and compensated for volatile solid losses during ensiling. Preservation of the original methane yield potential was achieved for four of five seaweed species, provided that silage effluent is collected and utilised. 10-28% of the ensiled biomass was released as effluent with methane yields of 218-423LNkg(-1) VS. If further optimised, ensiling represents an effective method of preservation crucial for an efficient seaweed biofuel industry.


Assuntos
Biocombustíveis , Fermentação , Metano/metabolismo , Alga Marinha/metabolismo , Biomassa , Estudos de Viabilidade , Ácido Láctico , Alga Marinha/química , Silagem/análise
14.
Diabetes Ther ; 4(1): 27-40, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23225378

RESUMO

INTRODUCTION: While incretin-based therapies have been compared in clinical trials, data comparing their relative efficacy in clinical practice remain limited, particularly when prescribed according to clinical guidelines. This study assessed the clinical and cost-effectiveness of, and patient preference for, incretin-based therapies initiated according to the National Institute for Health and Clinical Excellence (NICE) recommendations in UK clinical practice. METHODS: In a retrospective chart audit, anonymized data were collected for patients receiving incretin-based therapy according to NICE recommendations in clinical practice in Wales, UK. Parameters assessed included glycated hemoglobin (HbA1c), weight, achievement of NICE treatment continuation criteria, adverse events, treatment discontinuation, and drug cost-effectiveness based on observed treatment effects. Treatment preference for a dipeptidyl peptidase-4 inhibitor (DPP-4i) or glucagon-like peptide-1 receptor agonist (GLP-1RA) was assessed prospectively. RESULTS: Patients (1,114) were followed-up for a median of 48 weeks (256 received liraglutide, 148 received exenatide twice daily, and 710 received a DPP-4i). Liraglutide reduced HbA1c significantly more versus exenatide or DPP-4i (both P < 0.05). Weight changes were similar for GLP-1RAs but significantly greater vs. DPP-4is (both P < 0.05). NICE treatment continuation criteria were met by 32% and 24% of liraglutide 1.2 mg- and exenatide-treated patients (≥1% HbA1c reduction, ≥3% weight loss), and 61% of DPP-4i-treated patients (≥0.5% HbA1c reduction). Life-years gained per patient were 0.12, 0.08, and 0.07, and costs per quality-adjusted life-year were £16,505, £16,648, and £20,661 for liraglutide, exenatide, and DPP-4is, respectively. More patients (62.5%) preferred the GLP-1RA profile, with these patients having higher baseline body mass index score and HbA1c values, and longer diabetes duration than those preferring the DPP-4i profile. CONCLUSION: When prescribed according to NICE recommendations, incretin-based therapies are both clinically and cost-effective options, with liraglutide providing greatest HbA1c reductions. Greater body weight reductions occur with GLP-1RAs compared with DPP-4is. Patients with higher baseline HbA1c and longer diabetes duration prefer a GLP-1RA profile versus a DPP-4i.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA