Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 74
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Inorg Chem ; 63(13): 5779-5782, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38488723

RESUMO

Deprotonation of the thioamidate group of [OsH{κ2-N,S-[NHC(CH3)S]}(≡CPh)(IPr)(PiPr3)]OTf [1; IPr = 1,3-bis(2,6-diisopropylphenyl)imidazolylidene; OTf = CF3SO3] results in the release of acetonitrile and formation of the terminal sulfide complex OsH(S)(≡CPh)(IPr)(PiPr3) (2), which has been transformed into the hydrosulfide [OsH(SH)(≡CPh)(IPr)(PiPr3)]OTf (3) and the methylsulfide [OsH(SMe)(≡CPh)(IPr)(PiPr3)]OTf (4) through protonation and methylation reactions, respectively. The structure, spectroscopic characteristics, and reactivity of these compounds are compared. Reactions of 3 and 4 with 2-hydroxypyridine and 2-mercaptopyridine afford [OsH{κ2-X,N-[X-py]}(≡CPh)(IPr)(PiPr3)]OTf [X = O (5), S(6)].

2.
Inorg Chem ; 2024 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-39028899

RESUMO

Precursors PtCl{κ3-N,C,N-[py-C6HMe2-py]} (1), PtCl{κ3-N,C,N-[py-O-C6H3-O-py]} (2), Pt(OH){κ3-N,C,N-[py-C6HMe2-py]} (3), and Pt(OH){κ3-N,C,N-[py-O-C6H3-O-py]} (4) were used to prepare d8-platinum bimetallic complexes. Precursors 1 and 2 react with AgBF4 and 7-azaindole (Haz) to give [Pt{κ3-N,C,N-[py-C6HMe2-py]}{κ1-N-[Haz]}]BF4 (5) and [Pt{κ3-N,C,N-[py-O-C6H3-O-py]}{κ1-N-[Haz]}]BF4 (6) and 3 and 4 with indolo[2,3-b]indole (H2ii) to generate Pt{κ1-N-[Hii]}{κ3-N,C,N-[py-C6HMe2-py]} (7) and Pt{κ1-N-[Hii]}{κ3-N,C,N-[py-O-C6H3-O-py]} (8). Subsequent addition of 3 and 4 to 5-7 affords bimetallic derivatives [{Pt[κ3-N,C,N-(py-C6HMe2-py)]}2{µ-N,N-[az]}]BF4 (9), [{Pt[κ3-N,C,N-(py-O-C6H3-O-py)]}2{µ-N,N-[az]}]BF4 (10), and {Pt[κ3-N,C,N-(py-C6HMe2-py)]}2{µ-N,N-[ii]} (11). X-ray structures of 9-11 reveal separations between the metals in sequence 9 (3.0515(4) Å) < 10 (3.2689(9) Å) < 11 (3.2949(2) Å). DFT calculations support σ overlap of the dz2 orbitals of platinum atoms, for 9 and 10. Accordingly, their absorption spectra show a MMLCT transition. Complex 9 is a red emitter. The excited state has 3MMLCT characteristics and a Pt-Pt separation of 2.763 Å. Complex 11 is a dual emitter in the red and NIR regions, in solid. Both excited states have a 3LC/LMCT characteristic and platinum-platinum separations of 3.290 and 3.202 Å. Intermediate 5 is a green emitter that achieves quantum yields close to unity, when diluted in PMMA and 1,2-dichloroethane at low concentrations.

3.
Inorg Chem ; 63(14): 6346-6361, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38546839

RESUMO

Complex IrH5(PiPr3)2 (1) activates two different σ-bonds of 3-phenoxy-1-phenylisoquinoline, 2-(1H-benzimidazol-2-yl)-6-phenylpyridine, 2-(1H-indol-2-yl)-6-phenylpyridine, 2-(2-hydroxyphenyl)-6-phenylpyridine, N-(2-hydroxyphenyl)-N'-phenylimidazolylidene, and 1,3-di(2-pyridyl)-4,6-dimethylbenzene to give IrH{κ3-C,N,C-[C6H4-isoqui-O-C6H4]}(PiPr3)2 (2), IrH{κ3-N,N,C-[NBzim-py-C6H4]}(PiPr3)2 (3), IrH{κ3-N,N,C-[Ind-py-C6H4]}(PiPr3)2 (4), IrH{κ3-C,N,O-[C6H4-py-C6H4O]}(PiPr3)2 (5), IrH{κ3-C,C,O-[C6H4-Im-C6H4O]}(PiPr3)2 (6), and IrH{κ3-N,C,C-[py-C6HMe2-C5H3N]}(PiPr3)2 (7), respectively. The activations are sequential, with the second generally being the slowest. Accordingly, dihydride intermediates IrH2{κ2-C,N-[C6H4-isoqui-O-C6H5]}(PiPr3)2 (2d), IrH2{κ2-N,N-[NBzim-py-C6H5]}(PiPr3)2 (3d), IrH2{κ2-N,N-[Ind-py-C6H5]}(PiPr3)2 (4d), and IrH2{κ2-N,C-[py-C6HMe2-py]}(PiPr3)2 (7d) were characterized spectroscopically. Complexes 3 and 5 are green phosphorescent emitters upon photoexcitation, exhibiting good absorption over a wide range of wavelengths, emission quantum yields about 0.70 in solution, long enough lifetimes (10-17 µs), and reversible electrochemical behavior. In agreement with these features, complex 3 promotes the photocatalytic α-amino C(sp3)-H arylation of N,N-dimethylaniline and N-phenylpiperidine with 1,4-dicyanobenzene and 4-cyanopyridine under blue LED light irradiation. The C-C coupling products are isolated in high yields with only 2 mol % of photocatalyst after 24 h.

4.
Inorg Chem ; 62(26): 10152-10170, 2023 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-37343120

RESUMO

Replacement of the chloride ligand of PtCl{κ3-N,C,N-[py-C6HR2-py]} (R = H (1), Me (2)) and PtCl{κ3-N,C,N-[py-O-C6H3-O-py]} (3) by hydroxido gives Pt(OH){κ3-N,C,N-[py-C6HR2-py]} (R = H (4), Me (5)) and Pt(OH){κ3-N,C,N-[py-O-C6H3-O-py]} (6). These compounds promote deprotonation of 3-(2-pyridyl)pyrazole, 3-(2-pyridyl)-5-methylpyrazole, 3-(2-pyridyl)-5-trifluoromethylpyrazole, and 2-(2-pyridyl)-3,5-bis(trifluoromethyl)pyrrole. The coordination of the anions generates square-planar derivatives, which in solution exist as a unique species or equilibria between isomers. Reactions of 4 and 5 with 3-(2-pyridyl)pyrazole and 3-(2-pyridyl)-5-methylpyrazole provide Pt{κ3-N,C,N-[py-C6HR2-py]}{κ1-N1-[R'pz-py]} (R = H; R' = H (7), Me (8). R = Me; R' = H (9), Me (10)), displaying κ1-N1-pyridylpyrazolate coordination. A 5-trifluoromethyl substituent causes N1-to-N2 slide. Thus, 3-(2-pyridyl)-5-trifluoromethylpyrazole affords equilibria between Pt{κ3-N,C,N-[py-C6HR2-py]}{κ1-N1-[CF3pz-py]} (R = H (11a), Me (12a)) and Pt{κ3-N,C,N-[py-C6HR2-py]}{κ1-N2-[CF3pz-py]} (R = H (11b), Me (12b)). 1,3-Bis(2-pyridyloxy)phenyl allows the chelating coordination of the incoming anions. Deprotonations of 3-(2-pyridyl)pyrazole and its substituted 5-methyl counterpart promoted by 6 lead to equilibria between Pt{κ3-N,C,N-[pyO-C6H3-Opy]}{κ1-N1-[R'pz-py]} (R' = H (13a), Me (14a)) with a κ-N1-pyridylpyrazolate anion, keeping the pincer coordination of the di(pyridyloxy)aryl ligand, and Pt{κ2-N,C-[pyO-C6H3(Opy)]}{κ2-N,N-[R'pz-py]} (R' = H (13c), Me (14c)) with two chelates. Under the same conditions, 3-(2-pyridyl)-5-trifluoromethylpyrazole generates the three possible isomers: Pt{κ3-N,C,N-[pyO-C6H3-Opy]}{κ1-N1-[CF3pz-py]} (15a), Pt{κ3-N,C,N-[pyO-C6H3-Opy]}{κ1-N2-[CF3pz-py]} (15b), and Pt{κ2-N,C-[pyO-C6H3(Opy)]}{κ2-N,N-[CF3pz-py]} (15c). The N1-pyrazolate atom produces a remote stabilizing effect on the chelating form, pyridylpyrazolates being better chelate ligands than pyridylpyrrolates. Accordingly, reactions of 4-6 with 2-(2-pyridyl)-3,5-bis(trifluoromethyl)pyrrole yield Pt{κ3-N,C,N-[py-C6HR2-py]}{κ1-N1-[(CF3)2C4(py)HN]} (R = H (16), Me (17)) or Pt{κ3-N,C,N-[pyO-C6H3-Opy]}{κ1-N1-[(CF3)2C4(py)HN]} (18), displaying κ1-N1-pyrrolate coordination. Complexes 7-10 are efficient green phosphorescent emitters (488-576 nm). In poly(methyl methacrylate) (PMMA) films and in dichloromethane, they experience self-quenching, due to molecular stacking. Aggregation occurs through aromatic π-π interactions, reinforced by weak platinum-platinum interactions.

5.
Inorg Chem ; 62(41): 16810-16824, 2023 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-37782299

RESUMO

Iridium centers of [Ir(µ-Cl)(C8H14)2]2 (1) activate the Cß(sp2)-H bond of benzylideneacetone to give [Ir(µ-Cl){κ2-C,O-[C(Ph)CHC(Me)O]}2]2 (2), which is the starting point for the preparation of the spiro iridafurans IrCl{κ2-C,O-[C(Ph)CHC(Me)O]}2(PiPr3) (3), [Ir{κ2-C,O-[C(Ph)CHC(Me)O]}2(MeCN)2]BF4 (4), [Ir(µ-OH){κ2-C,O-[C(Ph)CHC(Me)O]}2]2 (5), Ir{κ2-C,O-[C(Ph)CHC(Me)O]}2{κ2-C,N-[C6MeH3-py]} (6), and Ir{κ2-C,O-[C(Ph)CHC(Me)O]}2{κ2-O,O-[acac]} (7). The five-membered rings are orthogonally arranged with the oxygen atoms in trans in an octahedral environment of the iridium atom. Spiro iridafurans are aromatic. The degree of aromaticity and the negative charge of the CH-carbon of the rings depend on ligand trans to the carbon directly attached to the metal. Aromaticity has been experimentally confirmed by bromination of iridafurans with N-bromosuccinimide (NBS). Reactions are sensitive to the degree of aromaticity of the ring and the negative charge of the attacked CH-carbon. Iridafurans can be selectively brominated, when different ligands lie trans to metalated carbons. Bromination of 3 occurs in the ring with the metalated carbon trans to chloride, whereas the bromination of 6 takes place in the ring with the metalated carbon trans to pyridyl. The first gives IrCl{κ2-C,O-[C(Ph)CBrC(Me)O]}{κ2-C,O-[C(Ph)CHC(Me)O]}(PiPr3) (8), which reacts with more NBS to form IrCl{κ2-C,O-[C(Ph)CBrC(Me)O]}2(PiPr3) (9). The second yields Ir{κ2-C,O-[C(Ph)CBrC(Me)O]}{κ2-C,O-[C(Ph)CHC(Me)O]}{κ2-C,N-[C6MeH3-py]} (10). The origin of the selectivity is kinetic, with the rate-determining step of the reaction being the NBS attack. The activation energy depends on the negative charge of the attacked atom; a higher negative charge allows for a lower activation energy. Accordingly, complex 7 undergoes bromination in the acetylacetonate ligand, giving Ir{κ2-C,O-[C(Ph)CHC(Me)O]}2{κ2-O,O-[acacBr]} (11).

6.
Inorg Chem ; 62(9): 3847-3859, 2023 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-36802562

RESUMO

The organic molecule 2-(1-phenyl-1-(pyridin-2-yl)ethyl)-6-(3-(1-phenyl-1-(pyridin-2-yl)ethyl)phenyl)pyridine (H3L) has been designed, prepared, and employed to synthesize the encapsulated-type pseudo-tris(heteroleptic) iridium(III) derivative Ir(κ6-fac-C,C',C″-fac-N,N',N″-L). Its formation takes place as a result of the coordination of the heterocycles to the iridium center and the ortho-CH bond activation of the phenyl groups. Dimer [Ir(µ-Cl)(η4-COD)]2 is suitable for the preparation of this compound of class [Ir(9h)] (9h = 9-electron donor hexadentate ligand), but Ir(acac)3 is a more appropriate starting material. Reactions were carried out in 1-phenylethanol. In contrast to the latter, 2-ethoxyethanol promotes the metal carbonylation, inhibiting the full coordination of H3L. Complex Ir(κ6-fac-C,C',C″-fac-N,N',N″-L) is a phosphorescent emitter upon photoexcitation, which has been employed to fabricate four yellow emitting devices with 1931 CIE (x:y) ∼ (0.52:0.48) and a maximum wavelength at 576 nm. These devices display luminous efficacies, external quantum efficiencies, and power efficacies at 600 cd m-2, which lie in the ranges 21.4-31.3 cd A-1, 7.8-11.3%, and 10.2-14.1 lm W1-, respectively, depending on the device configuration.

7.
Inorg Chem ; 62(49): 19821-19837, 2023 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-37988596

RESUMO

Two complementary procedures are presented to prepare cis-pyridyl-iridium(III) emitters of the class [3b+3b+3b'] with two orthometalated ligands of the 2-phenylpyridine type (3b) and a third ligand (3b'). They allowed to obtain four emitters of this class and to compare their properties with those of the trans-pyridyl isomers. The finding starts from IrH5(PiPr3)2, which reacts with 2-(p-tolyl)pyridine to give fac-[Ir{κ2-C,N-[C6MeH3-py]}3] with an almost quantitative yield. Stirring the latter in the appropriate amount of a saturated solution of HCl in toluene results in the cis-pyridyl adduct IrCl{κ2-C,N-[C6MeH3-py]}2{κ1-Cl-[Cl-H-py-C6MeH4]} stabilized with p-tolylpyridinium chloride, which can also be transformed into dimer cis-[Ir(µ-OH){κ2-C,N-[C6MeH3-py]}2]2. Adduct IrCl{κ2-C,N-[C6MeH3-py]}2{κ1-Cl-[Cl-H-py-C6MeH4]} directly generates cis-[Ir{κ2-C,N-[C6MeH3-py]}2{κ2-C,N-[C6H4-Isoqui]}] and cis-[Ir{κ2-C,N-[C6MeH3-py]}2{κ2-C,N-[C6H4-py]}] by transmetalation from Li[2-(isoquinolin-1-yl)-C6H4] and Li[py-2-C6H4]. Dimer cis-[Ir(µ-OH){κ2-C,N-[C6MeH3-py]}2]2 is also a useful starting complex when the precursor molecule of 3b' has a fairly acidic hydrogen atom, suitable for removal by hydroxide groups. Thus, its reactions with 2-picolinic acid and acetylacetone (Hacac) lead to cis-Ir{κ2-C,N-[C6MeH3-py]}2{κ2-O,N-[OC(O)-py]} and cis-Ir{κ2-C,N-[C6MeH3-py]}2{κ2-O,O-[acac]}. The stereochemistry of the emitter does not significantly influence the emission wavelengths. On the contrary, its efficiency is highly dependent on and associated with the stability of the isomer. The more stable isomer shows a higher quantum yield and color purity.

8.
Inorg Chem ; 61(48): 19597-19611, 2022 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-36416194

RESUMO

The preparation of three families of phosphorescent iridium(III) emitters, including iridaoxazole derivatives, hydroxycarbene compounds, and N,C(sp3),C(sp2),O-tetradentate containing complexes, has been performed starting from dimers cis-[Ir(µ2-η2-C≡CR){κ2-C,N-(MeC6H3-py)}2]2 (R = tBu (1a), Ph (1b)). Reactions of 1a with benzamide, acetamide, phenylacetamide, and trifluoroacetamide lead to the iridaoxazole derivatives Ir{κ2-C,O-[C(CH2tBu)NC(R)O]}{κ2-C,N-(MeC6H3-py)}2 (R = Ph (2), Me (3), CH2Ph (4), CF3 (5)) with a fac disposition of carbons and heteroatoms around the metal center. In 2-methyltetrahydrofuran and dichloromethane, water promotes the C-N rupture of the IrC-N bond of the iridaoxazole ring of 3-5 to form amidate-iridium(III)-hydroxycarbene derivatives Ir{κ1-N-[NHC(R)O]}{κ2-C,N-(MeC6H3-py)}2{═C(CH2tBu)OH} (R = Me (6), CH2Ph (7), CF3 (8)). In contrast to 1a, dimer 1b reacts with benzamide and acetamide to give Ir{κ4-N,C,C',O-[py-MeC6H3-C(CH2-C6H4)NHC(R)O]}{κ2-C,N-(MeC6H3-py)}(R = Ph (9), Me (10)), which bear a N,C(sp3),C(sp2),O-tetradentate ligand resulting from a triple coupling (an alkynyl ligand, an amide, and a coordinated aryl group) and a C-H bond activation at the metal coordination sphere. Complexes 2-4 and 6-10 are emissive upon photoexcitation, in orange (2-4), green (6-8), and yellow (9 and 10) regions, with quantum yields between low and moderate (0.01-0.50) and short lifetimes (0.2-9.0 µs).

9.
Inorg Chem ; 61(24): 9019-9033, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35438993

RESUMO

Alkynyl ligands stabilize dimers [Ir(µ-X)(3b)2]2 with a cis disposition of the heterocycles of the 3b ligands, in contrast to chloride. Thus, the complexes of this class─cis-[Ir(µ2-η2-C≡CPh){κ2-C,N-(C6H4-Isoqui)}2]2 (Isoqui = isoquinoline) and cis-[Ir(µ2-η2-C≡CR){κ2-C,N-(MeC6H3-py)}2]2 (R = Ph, tBu)─have been prepared in high yields, starting from the dihydroxo-bridged dimers trans-[Ir(µ-OH){κ2-C,N-(C6H4-Isoqui)}2]2 and trans-[Ir(µ-OH){κ2-C,N-(MeC6H3-py)}2]2 and terminal alkynes. Subsequently, the acetylide ligands have been employed as building blocks to prepare the orange and green iridium(III) phosphorescent emitters, Ir{κ2-C,N-[C(CH2Ph)Npy]}{κ2-C,N-(C6H4-Isoqui)}2 and Ir{κ2-C,N-[C(CH2R)Npy]}{κ2-C,N-(MeC6H3-py)}2 (R = Ph, tBu), respectively, with an octahedral structure of fac carbon and nitrogen atoms. The green emitter Ir{κ2-C,N-[C(CH2tBu)Npy]}{κ2-C,N-(MeC6H3-py)}2 reaches 100% of quantum yield in both the poly(methyl methacrylate) (PMMA) film and 2-MeTHF at room temperature. In organic light-emitting diode (OLED) devices, it demonstrates very saturated green emission at a peak wavelength of 500 nm, with an external quantum efficiency (EQE) of over 12% or luminous efficacy of 30.7 cd/A.

10.
Angew Chem Int Ed Engl ; 61(29): e202204081, 2022 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-35544362

RESUMO

The silylation of a phosphine of OsH6 (Pi Pr3 )2 is performed via net-metathesis between Si-C(spn ) and H-C(sp3 ) σ-bonds (n=2, 3). Complex OsH6 (Pi Pr3 )2 activates the Si-H bond of Et3 SiH and Ph3 SiH to give OsH5 (SiR3 )(Pi Pr3 )2 , which yield OsH4 {κ1 -P,η2 -SiH-[i Pr2 PCH(Me)CH2 SiR2 H]}(Pi Pr3 ) and R-H (R=Et, Ph), by displacement of a silyl substituent with a methyl group of a phosphine. Such displacement is a first-order process, with activation entropy consistent with a rate determining step occurring via a highly ordered transition state. It displays selectivity, releasing the hydrocarbon resulting from the rupture of the weakest Si-substituent bond, when the silyl ligand bears different substituents. Accordingly, reactions of OsH6 (Pi Pr3 )2 with dimethylphenylsilane, and 1,1,1,3,5,5,5-heptamethyltrisiloxane afford OsH5 (SiR2 R')(Pi Pr3 )2 , which evolve into OsH4 {κ1 -P,η2 -GeH-[i Pr2 PCH(Me)CH2 SiR2 H]}(Pi Pr3 ) (R=Me, OSiMe3 ) and R'-H (R'=Ph, Me). Exchange reaction is extended to Et3 GeH. The latter reacts with OsH6 (Pi Pr3 )2 to give OsH5 (GeEt3 )(Pi Pr3 )2 , which loses ethane to form OsH4 {κ1 -P,η2 -GeH-[i Pr2 PCH(Me)CH2 GeEt2 H]}(Pi Pr3 ).

11.
Inorg Chem ; 60(10): 7284-7296, 2021 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-33904305

RESUMO

The hexahydride OsH6(PiPr3)2 competently catalyzes the hydration of aliphatic nitriles to amides. The main metal species under the catalytic conditions are the trihydride osmium(IV) amidate derivatives OsH3{κ2-N,O-[HNC(O)R]}(PiPr3)2, which have been isolated and fully characterized for R = iPr and tBu. The rate of hydration is proportional to the concentrations of the catalyst precursor, nitrile, and water. When these experimental findings and density functional theory calculations are combined, the mechanism of catalysis has been established. Complexes OsH3{κ2-N,O-[HNC(O)R]}(PiPr3)2 dissociate the carbonyl group of the chelate to afford κ1-N-amidate derivatives, which coordinate the nitrile. The subsequent attack of an external water molecule to both the C(sp) atom of the nitrile and the N atom of the amidate affords the amide and regenerates the κ1-N-amidate catalysts. The attack is concerted and takes place through a cyclic six-membered transition state, which involves Cnitrile···O-H···Namidate interactions. Before the attack, the free carbonyl group of the κ1-N-amidate ligand fixes the water molecule in the vicinity of the C(sp) atom of the nitrile.

12.
Inorg Chem ; 60(4): 2783-2796, 2021 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-33543934

RESUMO

Reactions of polyhydrides OsH6(PiPr3)2 (1) and IrH5(PiPr3)2 (2) with rollover cyclometalated hydride complexes have been investigated in order to explore the influence of a metal center on the MHn unit of the other in mixed valence binuclear polyhydrides. Hexahydride 1 activates an ortho-CH bond of the heterocyclic moiety of the trihydride metal-ligand compounds OsH3{κ2-C,N-[C5RH2N-py]}(PiPr3)2 (R = H (3), Me (4), Ph (5)). Reactions of 3 and 4 lead to the hexahydrides (PiPr3)2H3Os{µ-[κ2-C,N-[C5RH2N-C5H3N]-N,C-κ2]}OsH3(PiPr3)2 (R = H (6), Me (7)), whereas 5 gives the pentahydride (PiPr3)2H3Os{µ-[κ2-C,N-[C5H3N-C5(C6H4)H2N]-C,N,C-κ3]}OsH2(PiPr3)2 (8). Pentahydride 2 promotes C-H bond activation of 3 and the iridium-dihydride IrH2{κ2-C,N-[C5H3N-py]}(PiPr3)2 (9) to afford the heterobinuclear pentahydride (PiPr3)2H3Os{µ-[κ2-C,N-[C5H3N-C5H3N]-N,C-κ2]}IrH2(PiPr3)2 (10) and the homobinuclear tetrahydride (PiPr3)2H2Ir{µ-[κ2-C,N-[C5H3N-C5H3N]-N,C-κ2]}IrH2(PiPr3)2 (11), respectively. Complexes 6-8 and 11 display HOMO delocalization throughout the metal-heterocycle-metal skeleton. Their sequential oxidation generates mono- and diradicals, which exhibit intervalence charge transfer transitions. This notable ability allows the tuning of the strength of the hydrogen-hydrogen and metal-hydrogen interactions within the MHn units.

13.
Inorg Chem ; 60(21): 16860-16870, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34657436

RESUMO

The reaction of the hexahydride OsH6(PiPr3)2 with a P,Ge,P-germylene-diphosphine affords an osmium tetrahydride derivative bearing a Ge,P-chelate, which arises from the hydrogenolysis of a P-C(sp3) bond. This Os(IV)-Ge(II) compound is a pioneering example of a bifunctional catalyst based on the coordination of a σ-donor acid, which is active in the dehydrogenation of formic acid to H2 and CO2. The kinetics of the dehydrogenation, the characterization of the resting state of the catalysis, and DFT calculations point out that the hydrogen formation (the fast stage) exclusively occurs on the coordination sphere of the basic metal center, whereas both the metal center and the σ-donor Lewis acid cooperatively participate in the CO2 release (the rate-determining step). During the process, the formate group pivots around the germanium to approach its hydrogen atom to the osmium center, which allows its transfer to the metal and the CO2 release.

14.
Inorg Chem ; 60(15): 11347-11363, 2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34291933

RESUMO

1-Phenyl-3-(1-phenyl-1-(pyridin-2-yl)ethyl)isoquinoline (H2MeL) has been prepared by Pd(N-XantPhos)-catalyzed "deprotonative cross-coupling processes" to synthesize new phosphorescent red iridium(III) emitters (601-732 nm), including the carbonyl derivative Ir(κ4-cis-C,C'-cis-N,N'-MeL)Cl(CO) and the acetylacetonate compound Ir(κ4-cis-C,C'-cis-N,N'-MeL)(acac). The tetradentate 6e-donor ligand (6tt') of these complexes is formed by two different bidentate units, namely, an orthometalated 2-phenylisoquinoline and an orthometalated 2-benzylpyridine. The link between the bidentate units reduces the number of possible stereoisomers of the structures [6tt' + 3b] (3b = bidentate 3e-donor ligand), with respect to a [3b + 3b' + 3b″] emitter containing three free bidentate units, and it permits a noticeable stereocontrol. Thus, the isomers fac-Ir(κ4-cis-C,C'-cis-N,N'-MeL){κ2-C,N-(C6H4-py)}, mer-Ir(κ4-cis-C,C'-cis-N,N'-MeL){κ2-C,N-(C6H3R-py)}, and mer-Ir(κ4-trans-C,C'-cis-N,N'-MeL){κ2-C,N-(C6HR-py)} (R = H, Me) have also been selectively obtained. The new emitters display short lifetimes (0.7-4.6 µs) and quantum yields in a doped poly(methyl methacrylate) film at 5 wt % and 2-methyltetrahydrofuran at room temperature between 0.08 and 0.58. The acetylacetonate complex Ir(κ4-cis-C,C'-cis-N,N'-MeL)(acac) has been used as a dopant for a red PhOLED device with an electroluminescence λmax of 672 nm and an external quantum efficiency of 3.4% at 10 mA/cm2.

15.
J Am Chem Soc ; 142(45): 19119-19131, 2020 11 11.
Artigo em Inglês | MEDLINE | ID: mdl-33125215

RESUMO

The saturated trihydride IrH3{κ3-P,O,P-[xant(PiPr2)2]} (1; xant(PiPr2)2 = 9,9-dimethyl-4,5-bis(diisopropylphosphino)xanthene) coordinates the Si-H bond of triethylsilane, 1,1,1,3,5,5,5-heptamethyltrisiloxane, and triphenylsilane to give the σ-complexes IrH3(η2-H-SiR3){κ2-cis-P,P-[xant(PiPr2)2]}, which evolve to the dihydride-silyl derivatives IrH2(SiR3){κ3-P,O,P-[xant(PiPr2)2]} (SiR3 = SiEt3 (2), SiMe(OSiMe3)2 (3), SiPh3 (4)) by means of the oxidative addition of the coordinated bond and the subsequent reductive elimination of H2. Complexes 2-4 activate a C-H bond of symmetrically and asymmetrically substituted arenes to form silylated arenes and to regenerate 1. This sequence of reactions defines a cycle for the catalytic direct C-H silylation of arenes. Stoichiometric isotopic experiments and the kinetic analysis of the transformations demonstrate that the C-H bond rupture is the rate-determining step of the catalysis. As a consequence, the selectivity of the silylation of substituted arenes is generally governed by ligand-substrate steric interactions.

16.
Chemistry ; 26(55): 12632-12644, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32428335

RESUMO

The saturated trihydride IrH3 {κ3 -P,O,P-[xant(PiPr2 )2 ]} (1; xant(PiPr2 )2 =9,9-dimethyl-4,5-bis(diisopropylphosphino)xanthene) activates the B-H bond of two molecules of pinacolborane (HBpin) to give H2 , the hydride-boryl derivatives IrH2 (Bpin){κ3 -P,O,P-[xant(PiPr2 )2 ]} (2) and IrH(Bpin)2 {κ3 -P,O,P-[xant(PiPr2 )2 ]} (3) in a sequential manner. Complex 3 activates a C-H bond of two molecules of benzene to form PhBpin and regenerates 2 and 1, also in a sequential manner. Thus, complexes 1, 2, and 3 define two cycles for the catalytic direct C-H borylation of arenes with HBpin, which have dihydride 2 as a common intermediate. C-H bond activation of the arenes is the rate-determining step of both cycles, as the C-H oxidative addition to 3 is faster than to 2. The results from a kinetic study of the reactions of 1 and 2 with HBpin support a cooperative function of the hydride ligands in the B-H bond activation. The addition of the boron atom of the borane to a hydride facilitates the coordination of the B-H bond through the formation of κ1 - and κ2 -dihydrideborate intermediates.

17.
Inorg Chem ; 59(21): 15877-15887, 2020 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-33059453

RESUMO

A synthetic methodology to prepare iridium(III) emitters of the class [3b+3b+3b'] with two ortho-metalated 1-phenylisoquinolines and an asymmetrical ß-diketonate has been discovered. The abstraction of the chloride ligands of the dimer [Ir(µ-Cl){κ2-C,N-(C6H4-isoqui)}2]2 (1, C6H5-isoqui = 1-phenylisoquinoline) with AgBF4 in acetone and the subsequent addition of water to the resulting solution affords the water solvate mononuclear complex [Ir{κ2-C,N-(C6H4-isoqui)}2(H2O)2]BF4 (2), which reacts with KOH to give the dihydroxo-bridged dimer [Ir(µ-OH){κ2-C,N-(C6H4-isoqui)}2]2 (3). Treatment of the latter with dimethyl acetylenedicarboxylate leads to Ir{κ2-C,N-(C6H4-isoqui)}2{κ2-O,O-[OC(CO2CH3)CHC(OCH3)O]} (4), as a result of the anti-addition of the O-H bond of a mononuclear [Ir(OH){κ2-C,N-(C6H4-isoqui)}2] fragment to the C-C triple bond of the alkyne and the coordination of one of the carboxylate substituents to the metal center. Complex 3 also reacts with α,ß-unsaturated ketones. The reaction with 3-(4-methylphenyl)-1-phenylprop-2-en-1-one affords Ir{κ2-C,N-(C6H4-isoqui)}2{κ2-O,O-[OC(C6H5)CHC(p-C6H4Me)O]} (5), whereas methyl vinyl ketone gives a mixture of Ir{κ2-C,N-(C6H4-isoqui)}2{κ2-O,O-[OC(CH3)CHCHO]} (6) and Ir{κ2-C,N-(C6H4-isoqui)}2{κ2-O,O-[OC(CH3)CHC(CH═CH2)O]} (7). Complexes 5 and 6 are the result of the addition of the O-H bond of the mononuclear [Ir(OH){κ2-C,N-(C6H4-isoqui)}2] fragment to the C-C double bond of the α,ß-unsaturated ketones and the coordination of the carbonyl group to the iridium center, to generate O,O-chelates which lose molecular hydrogen to aromatize into the asymmetrical ß-diketonate ligands. Complexes 4-7 are phosphorescent emitters in the red spectral region (599-672 nm) in doped poly(methyl methacrylate) (PMMA) film at 5 wt % at room temperature and 2-methyltetrahydrofuran at room temperature and 77 K. They display short lifetimes (0.8-2.5 µs) and quantum yields in both doped PMMA films and in 2-methyltetrahydrofuran at room temperature depending on the substituents of the ß-diketonate: about 0.6-0.5 for 4 and 6 and ca. 0.35 for 5 and 7.

18.
Inorg Chem ; 59(17): 12286-12294, 2020 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-32856908

RESUMO

To prepare new phosphorescent iridium(III) emitters, 2-phenyl-6-(1-phenyl-1-(pyridin-2-yl)ethyl)pyridine (H2L) has been designed and its reactions with [Ir(µ-Cl)(η4-COD)]2 (1, COD = 1,5-cyclooctadiene) have been studied. The products obtained depend on the refluxing temperature of the solvent. Thus, complexes Ir(κ4-C,C',N,N'-L)Cl(CO) (2), [Ir(η4-COD)(κ2-N,N'-H2L)][IrCl2(η4-COD)] (3), and [Ir(µ-Cl)(κ4-C,C',N,N'-L)]2 (4) have been formed in 2-ethoxyethanol, propan-2-ol, and 1-phenylethanol, respectively. Complex 4 reacts with K(acac) to give the acetylacetonate derivative Ir(κ4-C,C',N,N'-L)(acac) (5). Complexes 2 and 5 are efficient blue-green and green emitters of classes [6tt+1m+2m] and [6tt+3b], respectively. They display lifetimes in the range of 1.1-4.5 µs and high quantum yields (0.54-0.87) in both PMMA films and 2-MeTHF at room temperature.

19.
Inorg Chem ; 59(6): 3838-3849, 2020 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-32119526

RESUMO

The way to prepare molecular emitters [5t + 4t'] of iridium(III) with a 5t ligand derived from the abstraction of the hydrogen atom at position 2 of the aryl group of 1,3-di(2-pyridyl)benzene (dpybH) is shown. In addition, the photophysical properties of the new emitters are compared with those of their counterparts resulting from the deprotonation of 1,3-di(2-pyridyl)-4,6-dimethylbenzene (dpyMebH), at the same position, which are also synthesized. Treatment of 0.5 equiv of the dimer [Ir(µ-Cl)(η2-COE)2]2 (COE = cyclooctene) with 1.0 equiv of Hg(dpyb)Cl leads to the iridium(III) derivative IrCl2{κ3-N,C,N-(dpyb)}(η2-COE) (3), which reacts with 2-(1H-imidazol-2-yl)-6-phenylpyridine (HNImpyC6H5) and 2-(1H-benzimidazol-2-yl)-6-phenylpyridine (HNBzimpyC6H5) in the presence of Na2CO3 to give Ir{κ3-C,N,N-(NImpyC6H4)}{κ3-N,C,N-(dpyb)} (4) and Ir{κ3-C,N,N-(NBzimpyC6H4)}{κ3-N,C,N-(dpyb)} (5), respectively. Similar reactions of the Williams's dimer [IrCl(µ-Cl){κ3-N,C,N-(dpyMeb)}]2 with HNImpyC6H5 and HNBzimpyC6H5 in the presence of Na2CO3 afford the dimethylated counterparts Ir{κ3-C,N,N-(NImpyC6H4)}{κ3-N,C,N-(dpyMeb)} (6) and Ir{κ3-C,N,N-(NBzimpyC6H4)}{κ3-N,C,N-(dpyMeb)} (7), whereas 2-(6-phenylpyridine-2-yl)-1H-indole (HIndpyC6H5) initially gives IrH{κ2-N,N-(IndpyC6H5)}{κ3-N,C,N-(dpyMeb)} (8) and subsequently Ir{κ3-C,N,N-(IndpyC6H4)}{κ3-N,C,N-(dpyMeb)} (9). Complexes 4-7 are phosphorescent green emitters (λem 490-550 nm), whereas 9 is greenish yellow emissive (λem 547-624 nm). They display lifetimes in the range 0.5-9.7 µs and quantum yields in both doped poly(methyl)methacrylate films and in 2-methyltetrahydrofuran at room temperature depending upon the ligands: 0.5-0.7 for 6 and 7, about 0.4 for 4 and 5, and 0.3-0.2 for 9.

20.
Inorg Chem ; 58(8): 4712-4717, 2019 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-30916951

RESUMO

The tris(boryl) complex Ir(Bcat)3{κ3-P,O,P-[xant(PiPr2)2]} [Bcat = catecholboryl; xant(PiPr2)2 = 9,9-dimethyl-4,5-bis(diisopropylphosphino)xanthene] has been prepared and characterized by X-ray diffraction analysis. The boryl ligands are disposed in a mer arrangement. The Ir-B bonds situated mutually trans are ∼0.1 Å longer than that disposed cis to the other two. An energy decomposition analysis method coupled to natural orbitals for chemical valence has revealed that the level of π-back-donation from the metal to the p z atomic orbital of the boron atom decreases ∼43% in the longer bonds with respect to the shorter one, while the level of σ-bonding interaction diminishes by only ∼8%.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA