Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cancer ; 13: 16, 2014 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-24468090

RESUMO

BACKGROUND: Tumor spreading is the major threat for cancer patients. The recently published anti-cancer drug salinomycin raised hope for an improved treatment by targeting therapy-refractory cancer stem cells. However, an unambiguous role of salinomycin against cancer cell migration and metastasis formation remains elusive. FINDINGS: We report that salinomycin effectively inhibits cancer cell migration in a variety of cancer types as determined by Boyden chamber assays. Additionally, cells were treated with doxorubicin at a concentration causing a comparable low cytotoxicity, emphasizing the anti-migratory potential of salinomycin. Moreover, single-cell tracking by time-lapse microscopy demonstrated a remarkable effect of salinomycin on breast cancer cell motility. Ultimately, salinomycin treatment significantly reduced the metastatic tumor burden in a syngenic mouse tumor model. CONCLUSIONS: Our findings clearly show that salinomycin can strongly inhibit cancer cell migration independent of the induction of cell death. We furthermore demonstrate for the first time that salinomycin treatment reduces metastasis formation in vivo, strengthening its role as promising anti-cancer therapeutic.


Assuntos
Antineoplásicos/farmacologia , Neoplasias da Mama/patologia , Movimento Celular/efeitos dos fármacos , Piranos/farmacologia , Carga Tumoral/efeitos dos fármacos , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Microscopia de Fluorescência , Metástase Neoplásica/prevenção & controle
2.
Transl Oncol ; 7(6): 702-11, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25500079

RESUMO

Acquiring therapy resistance is one of the major obstacles in the treatment of patients with cancer. The discovery of the cancer stem cell (CSC)-specific drug salinomycin raised hope for improved treatment options by targeting therapy-refractory CSCs and mesenchymal cancer cells. However, the occurrence of an acquired salinomycin resistance in tumor cells remains elusive. To study the formation of salinomycin resistance, mesenchymal breast cancer cells were sequentially treated with salinomycin in an in vitro cell culture assay, and the resulting differences in gene expression and salinomycin susceptibility were analyzed. We demonstrated that long-term salinomycin treatment of mesenchymal cancer cells resulted in salinomycin-resistant cells with elevated levels of epithelial markers, such as E-cadherin and miR-200c, a decreased migratory capability, and a higher susceptibility to the classic chemotherapeutic drug doxorubicin. The formation of salinomycin resistance through the acquisition of epithelial traits was further validated by inducing mesenchymal-epithelial transition through an overexpression of miR-200c. The transition from a mesenchymal to a more epithelial-like phenotype of salinomycin-treated tumor cells was moreover confirmed in vivo, using syngeneic and, for the first time, transgenic mouse tumor models. These results suggest that the acquisition of salinomycin resistance through the clonal selection of epithelial-like cancer cells could become exploited for improved cancer therapies by antagonizing the tumor-progressive effects of epithelial-mesenchymal transition.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA