Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nat Immunol ; 24(3): 501-515, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36797499

RESUMO

Blocking pyrimidine de novo synthesis by inhibiting dihydroorotate dehydrogenase is used to treat autoimmunity and prevent expansion of rapidly dividing cell populations including activated T cells. Here we show memory T cell precursors are resistant to pyrimidine starvation. Although the treatment effectively blocked effector T cells, the number, function and transcriptional profile of memory T cells and their precursors were unaffected. This effect occurred in a narrow time window in the early T cell expansion phase when developing effector, but not memory precursor, T cells are vulnerable to pyrimidine starvation. This vulnerability stems from a higher proliferative rate of early effector T cells as well as lower pyrimidine synthesis capacity when compared with memory precursors. This differential sensitivity is a drug-targetable checkpoint that efficiently diminishes effector T cells without affecting the memory compartment. This cell fate checkpoint might therefore lead to new methods to safely manipulate effector T cell responses.


Assuntos
Pirimidinas , Ciclo Celular , Diferenciação Celular
2.
PLoS Biol ; 17(7): e3000072, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31306410

RESUMO

Lymphoid T-zone fibroblastic reticular cells (FRCs) actively promote T-cell trafficking, homeostasis, and expansion but can also attenuate excessive T-cell responses via inducible nitric oxide (NO) and constitutive prostanoid release. It remains unclear how these FRC-derived mediators dampen T-cell responses and whether this occurs in vivo. Here, we confirm that murine lymph node (LN) FRCs produce prostaglandin E2 (PGE2) in a cyclooxygenase-2 (COX2)-dependent and inflammation-independent fashion. We show that this COX2/PGE2 pathway is active during both strong and weak T-cell responses, in contrast to NO, which only comes into play during strong T-cell responses. During chronic infections in vivo, PGE2-receptor signaling in virus-specific cluster of differentiation (CD)8 cytotoxic T cells was shown by others to suppress T-cell survival and function. Using COX2flox/flox mice crossed to mice expressing Cre recombinase expression under control of the CC chemokine ligand (CCL19) promoter (CCL19cre), we now identify CCL19+ FRC as the critical source of this COX2-dependent suppressive factor, suggesting PGE2-expressing FRCs within lymphoid tissues are an interesting therapeutic target to improve T-cell-mediated pathogen control during chronic infection.


Assuntos
Ciclo-Oxigenase 2/imunologia , Fibroblastos/imunologia , Linfonodos/imunologia , Prostaglandinas/imunologia , Linfócitos T/imunologia , Animais , Linhagem Celular , Movimento Celular/genética , Movimento Celular/imunologia , Proliferação de Células/genética , Ciclo-Oxigenase 2/genética , Ciclo-Oxigenase 2/metabolismo , Fibroblastos/metabolismo , Fibroblastos/virologia , Linfonodos/citologia , Linfonodos/metabolismo , Ativação Linfocitária/imunologia , Coriomeningite Linfocítica/imunologia , Coriomeningite Linfocítica/metabolismo , Coriomeningite Linfocítica/virologia , Vírus da Coriomeningite Linfocítica/imunologia , Vírus da Coriomeningite Linfocítica/fisiologia , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Prostaglandinas/biossíntese , Linfócitos T/virologia
3.
Influenza Other Respir Viruses ; 17(11): e13218, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38019699

RESUMO

BACKGROUND: Evidence on the burden of seasonal influenza in Switzerland is scarce, yet it is critical for the design of effective prevention and control measures. The objective of this study was to assess influenza-related resource utilization, health care expenditures and quality-adjusted life-years (QALYs) lost in Switzerland across the 2016/2017-2018/2019 influenza seasons. METHODS: We retrospectively analyzed multiple real-world data sources to calculate epidemiological and health outcomes, QALYs lost, and direct medical costs due to influenza in the Swiss adult population. Subgroups included residents 18-49, 50-64, and 65+ years of age. The observation period was Week 26, 2016, to Week 25, 2019. RESULTS: Across the three seasons, we estimated seasonal averages of 203,090 (se ± 26,717) general practitioner (GP) visits for influenza-like illness (ILI) 4944 (se ± 785) influenza-attributable hospitalizations and 1355 (se ± 169) excess deaths attributable to influenza. We estimated a total loss of 8429 (2016/2017), 11,179 (2017/2018), and 7701 (2018/2019) QALYs due to influenza. On average, 88% of the loss in QALYs was attributed to premature deaths due to influenza. The total direct medical costs amounted to 44.4 (2016/2017), 77.3 (2017/2018), and 64.5 (2018/2019) million euros. On average, 79.6% of the total costs arose due to hospitalizations. CONCLUSIONS: In Switzerland, the burden of influenza on patients and payers is significant and particularly high in the elderly population. Policy interventions to increase vaccination rates and the uptake of more effective vaccines among the elderly are needed to reduce the burden of influenza.


Assuntos
Vacinas contra Influenza , Influenza Humana , Adulto , Humanos , Idoso , Influenza Humana/prevenção & controle , Estações do Ano , Suíça/epidemiologia , Estudos Retrospectivos
4.
Cell Rep ; 32(4): 107957, 2020 07 28.
Artigo em Inglês | MEDLINE | ID: mdl-32726622

RESUMO

Manipulating molecules that impact T cell receptor (TCR) or cytokine signaling, such as the protein tyrosine phosphatase non-receptor type 2 (PTPN2), has significant potential for advancing T cell-based immunotherapies. Nonetheless, it remains unclear how PTPN2 impacts the activation, survival, and memory formation of T cells. We find that PTPN2 deficiency renders cells in vivo and in vitro less dependent on survival-promoting cytokines, such as interleukin (IL)-2 and IL-15. Remarkably, briefly ex vivo-activated PTPN2-deficient T cells accumulate in 3- to 11-fold higher numbers following transfer into unmanipulated, antigen-free mice. Moreover, the absence of PTPN2 augments the survival of short-lived effector T cells and allows them to robustly re-expand upon secondary challenge. Importantly, we find no evidence for impaired effector function or memory formation. Mechanistically, PTPN2 deficiency causes broad changes in the expression and phosphorylation of T cell expansion and survival-associated proteins. Altogether, our data underline the therapeutic potential of targeting PTPN2 in T cell-based therapies to augment the number and survival capacity of antigen-specific T cells.


Assuntos
Ativação Linfocitária/genética , Proteína Tirosina Fosfatase não Receptora Tipo 2/metabolismo , Linfócitos T/metabolismo , Animais , Proteínas de Transporte/metabolismo , Comunicação Celular , Citocinas/metabolismo , Feminino , Imunoterapia Adotiva/métodos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fosforilação , Proteína Tirosina Fosfatase não Receptora Tipo 2/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais
5.
Cell Rep ; 17(3): 627-635, 2016 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-27732840

RESUMO

Many infections are caused by pathogens that are similar, but not identical, to previously encountered viruses, bacteria, or vaccines. In such re-infections, pathogens introduce known antigens, which are recognized by memory T cells and new antigens that activate naive T cells. How preexisting memory T cells impact the repertoire of T cells responding to new antigens is still largely unknown. We demonstrate that even a minimum epitope overlap between infections strongly increases the activation threshold and narrows the diversity of T cells recruited in response to new antigens. Thus, minimal cross-reactivity between infections can significantly impact the outcome of a subsequent immune response. Interestingly, we found that non-transferrable memory T cells are most effective in raising the activation threshold. Our findings have implications for designing vaccines and suggest that vaccines meant to target low-affinity T cells are less effective when they contain a strong CD8 T cell epitope that has previously been encountered.


Assuntos
Doenças Transmissíveis/imunologia , Epitopos de Linfócito T/imunologia , Linfócitos T/imunologia , Transferência Adotiva , Animais , Apresentação de Antígeno/imunologia , Linfócitos T CD8-Positivos/imunologia , Coinfecção/imunologia , Doenças Transmissíveis/patologia , Memória Imunológica , Inflamação/patologia , Ativação Linfocitária/imunologia , Camundongos Endogâmicos C57BL
6.
Cell Rep ; 14(5): 1206-1217, 2016 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-26804903

RESUMO

Upon infection, antigen-specific naive CD8 T cells are activated and differentiate into short-lived effector cells (SLECs) and memory precursor cells (MPECs). The underlying signaling pathways remain largely unresolved. We show that Rictor, the core component of mammalian target of rapamycin complex 2 (mTORC2), regulates SLEC and MPEC commitment. Rictor deficiency favors memory formation and increases IL-2 secretion capacity without dampening effector functions. Moreover, mTORC2-deficient memory T cells mount more potent recall responses. Enhanced memory formation in the absence of mTORC2 was associated with Eomes and Tcf-1 upregulation, repression of T-bet, enhanced mitochondrial spare respiratory capacity, and fatty acid oxidation. This transcriptional and metabolic reprogramming is mainly driven by nuclear stabilization of Foxo1. Silencing of Foxo1 reversed the increased MPEC differentiation and IL-2 production and led to an impaired recall response of Rictor KO memory T cells. Therefore, mTORC2 is a critical regulator of CD8 T cell differentiation and may be an important target for immunotherapy interventions.


Assuntos
Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Diferenciação Celular , Fatores de Transcrição Forkhead/metabolismo , Memória Imunológica , Complexos Multiproteicos/metabolismo , Serina-Treonina Quinases TOR/metabolismo , Animais , Proteínas de Transporte/metabolismo , Diferenciação Celular/genética , Núcleo Celular/metabolismo , Proteína Forkhead Box O1 , Memória Imunológica/genética , Interleucina-2/biossíntese , Alvo Mecanístico do Complexo 2 de Rapamicina , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteína Companheira de mTOR Insensível à Rapamicina , Proteínas com Domínio T/metabolismo , Transcrição Gênica
7.
Nat Rev Immunol ; 14(11): 768-74, 2014 11.
Artigo em Inglês | MEDLINE | ID: mdl-25257362

RESUMO

Chronic viral infections and malignant tumours induce T cells that have a reduced ability to secrete effector cytokines and have upregulated expression of the inhibitory receptor PD1 (programmed cell death protein 1). These features have so far been considered to mark terminally differentiated 'exhausted' T cells. However, several recent clinical and experimental observations indicate that phenotypically exhausted T cells can still mediate a crucial level of pathogen or tumour control. In this Opinion article, we propose that the exhausted phenotype results from a differentiation process in which T cells stably adjust their effector capacity to the needs of chronic infection. We argue that this phenotype is optimized to cause minimal tissue damage while still mediating a critical level of pathogen control. In contrast to the presently held view of functional exhaustion, this new concept better reflects the pathophysiology and clinical manifestations of persisting infections, and it provides a rationale for emerging therapies that enhance T cell activity in chronic infection and cancer by blocking inhibitory receptors.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD8-Positivos/imunologia , Neoplasias/imunologia , Receptor de Morte Celular Programada 1/biossíntese , Viroses/imunologia , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD8-Positivos/citologia , Diferenciação Celular/imunologia , Doença Crônica , Citocinas/metabolismo , Humanos , Memória Imunológica , Ativação Linfocitária/imunologia
8.
Front Immunol ; 4: 154, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23801991

RESUMO

Cytotoxic CD8 T cells mediate immunity to pathogens and they are able to eliminate malignant cells. Immunity to viruses and bacteria primarily involves CD8 T cells bearing high affinity T cell receptors (TCRs), which are specific to pathogen-derived (non-self) antigens. Given the thorough elimination of high affinity self/tumor-antigen reactive T cells by central and peripheral tolerance mechanisms, anti-cancer immunity mostly depends on TCRs with intermediate-to-low affinity for self-antigens. Because of this, a promising novel therapeutic approach to increase the efficacy of tumor-reactive T cells is to engineer their TCRs, with the aim to enhance their binding kinetics to pMHC complexes, or to directly manipulate the TCR-signaling cascades. Such manipulations require a detailed knowledge on how pMHC-TCR and co-receptors binding kinetics impact the T cell response. In this review, we present the current knowledge in this field. We discuss future challenges in identifying and targeting the molecular mechanisms to enhance the function of natural or TCR-affinity optimized T cells, and we provide perspectives for the development of protective anti-tumor T cell responses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA