Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Inflamm Res ; 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39052063

RESUMO

BACKGROUND: Inflammation, a biological response of the immune system, can be triggered by various factors such as pathogens, damaged cells, and toxic compounds. These factors can lead to chronic inflammatory responses, potentially causing tissue damage or disease. Both infectious and non-infectious agents, as well as cell damage, activate inflammatory cells and trigger common inflammatory signalling pathways, including NF-κB, MAPK, and JAK-STAT pathways. These pathways are activated through adaptor proteins, which possess distinct protein binding domains that connect corresponding interacting molecules to facilitate downstream signalling. Adaptor molecules have gained widespread attention in recent years due to their key role in chronic inflammatory diseases. METHODS: In this review, we explore potential pharmacological agents that can be used to target adaptor molecules in chronic inflammatory responses. A comprehensive analysis of published studies was performed to obtain information on pharmacological agents. CONCLUSION: This review highlights the therapeutic strategies involving small molecule inhibitors, antisense oligonucleotide therapy, and traditional medicinal compounds that have been found to inhibit the inflammatory response and pro-inflammatory cytokine production. These strategies primarily block the protein-protein interactions in the inflammatory signaling cascade. Nevertheless, extensive preclinical studies and risk assessment methodologies are necessary to ensure their safety.

2.
J Neuroinflammation ; 20(1): 196, 2023 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-37635235

RESUMO

BACKGROUND: Individuals who have experienced mild traumatic brain injuries (mTBIs) suffer from several comorbidities, including chronic pain. Despite extensive studies investigating the underlying mechanisms of mTBI-associated chronic pain, the role of inflammation in long-term pain after mTBIs is not fully elucidated. Given the shifting dynamics of inflammation, it is important to understand the spatial-longitudinal changes in inflammatory processes following mTBIs and their effects on TBI-related pain. METHODS: We utilized a recently developed transgenic caspase-1 luciferase reporter mouse model to monitor caspase-1 activation through a thinned skull window in the in vivo setting following three closed-head mTBI events. Organotypic coronal brain slice cultures and acutely dissociated dorsal root ganglion (DRG) cells provided tissue-relevant context of inflammation signal. Mechanical allodynia was assessed by mechanical withdrawal threshold to von Frey and thermal hyperalgesia withdrawal latency to radiant heat. Mouse grimace scale (MGS) was used to detect spontaneous or non-evoked pain. In some experiments, mice were prophylactically treated with MCC950, a potent small molecule inhibitor of NLRP3 inflammasome assembly to inhibit injury-induced inflammatory signaling. Bioluminescence spatiotemporal dynamics were quantified in the head and hind paws, and caspase-1 activation was confirmed by immunoblot. Immunofluorescence staining was used to monitor the progression of astrogliosis and microglial activation in ex vivo brain tissue following repetitive closed-head mTBIs. RESULTS: Mice with repetitive closed-head mTBIs exhibited significant increases of the bioluminescence signals within the brain and paws in vivo for at least one week after each injury. Consistently, immunoblotting and immunofluorescence experiments confirmed that mTBIs led to caspase-1 activation, astrogliosis, and microgliosis. Persistent changes in MGS and hind paw withdrawal thresholds, indicative of pain states, were observed post-injury in the same mTBI animals in vivo. We also observed enhanced inflammatory responses in ex vivo brain slice preparations and DRG for at least 3 days following mTBIs. In vivo treatment with MCC950 significantly reduced caspase-1 activation-associated bioluminescent signals in vivo and decreased stimulus-evoked and non-stimulus evoked nociception. CONCLUSIONS: Our findings suggest that the inflammatory states in the brain and peripheral nervous system following repeated mTBIs are coincidental with the development of nociceptive sensitization, and that these events can be significantly reduced by inhibition of NLRP3 inflammasome activation.


Assuntos
Concussão Encefálica , Lesões Encefálicas Traumáticas , Dor Crônica , Animais , Camundongos , Gliose , Inflamassomos , Proteína 3 que Contém Domínio de Pirina da Família NLR , Nociceptividade , Hiperalgesia/etiologia , Caspase 1
3.
Mol Psychiatry ; 27(2): 1256-1273, 2022 02.
Artigo em Inglês | MEDLINE | ID: mdl-35087196

RESUMO

Alzheimer's disease (AD) is a progressive neurodegenerative disorder with loss of cognitive, executive, and other mental functions, and is the most common form of age-related dementia. Amyloid-ß peptide (Aß) contributes to the etiology and progression of the disease. Aß is derived from the amyloid-ß precursor protein (APP). Multiple microRNA (miRNA) species are also implicated in AD. We report that human hsa-miR20b-5p (miR-20b), produced from the MIR20B gene on Chromosome X, may play complex roles in AD pathogenesis, including Aß regulation. Specifically, miR-20b-5p miRNA levels were altered in association with disease progression in three regions of the human brain: temporal neocortex, cerebellum, and posterior cingulate cortex. In cultured human neuronal cells, miR-20b-5p treatment interfered with calcium homeostasis, neurite outgrowth, and branchpoints. A single-nucleotide polymorphism (SNP) upstream of the MIR20B gene (rs13897515) associated with differences in levels of cerebrospinal fluid (CSF) Aß1-42 and thickness of the entorhinal cortex. We located a miR-20b-5p binding site in the APP mRNA 3'-untranslated region (UTR), and treatment with miR-20b-5p reduced APP mRNA and protein levels. Network analysis of protein-protein interactions and gene coexpression revealed other important potential miR-20b-5p targets among AD-related proteins/genes. MiR-20b-5p, a miRNA that downregulated APP, was paradoxically associated with an increased risk for AD. However, miR-20b-5p also reduced, and the blockade of APP by siRNA likewise reduced calcium influx. As APP plays vital roles in neuronal health and does not exist solely to be the source of "pathogenic" Aß, the molecular etiology of AD is likely to not just be a disease of "excess" but a disruption of delicate homeostasis.


Assuntos
Doença de Alzheimer , MicroRNAs , Doença de Alzheimer/metabolismo , Peptídeos beta-Amiloides/metabolismo , Biomarcadores , Cálcio , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , RNA Mensageiro
4.
Int J Mol Sci ; 24(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36614317

RESUMO

Bacterial colonization of open wounds is common, and patients with infected wounds often report significantly elevated pain sensitivity at the wound site. Transient Receptor Potential Vanilloid Type 1 (TRPV1) channels are known to play an important role in pain signaling and may be sensitized under pro-inflammatory conditions. Bacterial membrane components, such as phosphoethanolamine dihydroceramide (PEDHC), phosphoglycerol dihydroceramide (PGDHC), and lipopolysaccharide (LPS), are released in the environment from the Gram-negative bacteria of the Bacteroidetes species colonizing the infected wounds. Here, we used intracellular calcium imaging and patch-clamp electrophysiology approaches to determine whether bacterially derived PEDHC, PGDHC, or LPS can modulate the activity of the TRPV1 channels heterologously expressed in HEK cells. We found that PEDHC and PGDHC can sensitize TRPV1 in a concentration-dependent manner, whereas LPS treatment does not significantly affect TRPV1 activity in HEK cells. We propose that sensitization of TRPV1 channels by Bacteroidetes-derived dihydroceramides may at least in part underlie the increased pain sensitivity associated with wound infections.


Assuntos
Bacteroidetes , Ceramidas , Dor , Canais de Cátion TRPV , Humanos , Bacteroidetes/metabolismo , Cálcio/metabolismo , Capsaicina/farmacologia , Lipopolissacarídeos/metabolismo , Dor/metabolismo , Dor/microbiologia , Canais de Cátion TRPV/metabolismo , Ceramidas/metabolismo , Ceramidas/farmacologia , Células HEK293
5.
Circ Res ; 125(9): 805-820, 2019 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-31451038

RESUMO

RATIONALE: Even in antiretroviral therapy-treated patients, HIV continues to play a pathogenic role in cardiovascular diseases. A possible cofactor may be persistence of the early HIV response gene Nef, which we have demonstrated recently to persist in the lungs of HIV+ patients on antiretroviral therapy. Previously, we have reported that HIV strains with Nef, but not Nef-deleted HIV strains, cause endothelial proinflammatory activation and apoptosis. OBJECTIVE: To characterize mechanisms through which HIV-Nef leads to the development of cardiovascular diseases using ex vivo tissue culture approaches as well as interventional experiments in transgenic murine models. METHODS AND RESULTS: Extracellular vesicles derived from both peripheral blood mononuclear cells and plasma from HIV+ patient blood samples induced human coronary artery endothelial cells dysfunction. Plasma-derived extracellular vesicles from antiretroviral therapy+ patients who were HIV-Nef+ induced significantly greater endothelial apoptosis compared with HIV-Nef-plasma extracellular vesicles. Both HIV-Nef expressing T cells and HIV-Nef-induced extracellular vesicles increased transfer of cytosol and Nef protein to endothelial monolayers in a Rac1-dependent manner, consequently leading to endothelial adhesion protein upregulation and apoptosis. HIV-Nef induced Rac1 activation also led to dsDNA breaks in endothelial colony forming cells, thereby resulting in endothelial colony forming cell premature senescence and endothelial nitric oxide synthase downregulation. These Rac1-dependent activities were characterized by NOX2-mediated reactive oxygen species production. Statin treatment equally inhibited Rac1 inhibition in preventing or reversing all HIV-Nef-induction abnormalities assessed. This was likely because of the ability of statins to block Rac1 prenylation as geranylgeranyl transferase inhibitors were effective in inhibiting HIV-Nef-induced reactive oxygen species formation. Finally, transgenic expression of HIV-Nef in endothelial cells in a murine model impaired endothelium-mediated aortic ring dilation, which was then reversed by 3-week treatment with 5 mg/kg atorvastatin. CONCLUSIONS: These studies establish a mechanism by which HIV-Nef persistence despite antiretroviral therapy could contribute to ongoing HIV-related vascular dysfunction, which may then be ameliorated by statin treatment.


Assuntos
Células Endoteliais/metabolismo , Infecções por HIV/tratamento farmacológico , Infecções por HIV/metabolismo , Inibidores de Hidroximetilglutaril-CoA Redutases/uso terapêutico , Produtos do Gene nef do Vírus da Imunodeficiência Humana/metabolismo , Proteínas rac1 de Ligação ao GTP/metabolismo , Adulto , Idoso , Animais , Células Endoteliais/efeitos dos fármacos , Feminino , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Masculino , Camundongos , Camundongos Transgênicos , Pessoa de Meia-Idade , Resultado do Tratamento
6.
Circ Res ; 125(11): 969-988, 2019 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-31610731

RESUMO

RATIONALE: There is incomplete knowledge of the impact of bone marrow cells on the gut microbiome and gut barrier function. OBJECTIVE: We postulated that diabetes mellitus and systemic ACE2 (angiotensin-converting enzyme 2) deficiency would synergize to adversely impact both the microbiome and gut barrier function. METHODS AND RESULTS: Bacterial 16S rRNA sequencing and metatranscriptomic analysis were performed on fecal samples from wild-type, ACE2-/y, Akita (type 1 diabetes mellitus), and ACE2-/y-Akita mice. Gut barrier integrity was assessed by immunofluorescence, and bone marrow cell extravasation into the small intestine was evaluated by flow cytometry. In the ACE2-/y-Akita or Akita mice, the disrupted barrier was associated with reduced levels of myeloid angiogenic cells, but no increase in inflammatory monocytes was observed within the gut parenchyma. Genomic and metatranscriptomic analysis of the microbiome of ACE2-/y-Akita mice demonstrated a marked increase in peptidoglycan-producing bacteria. When compared with control cohorts treated with saline, intraperitoneal administration of myeloid angiogenic cells significantly decreased the microbiome gene expression associated with peptidoglycan biosynthesis and restored epithelial and endothelial gut barrier integrity. Also indicative of diabetic gut barrier dysfunction, increased levels of peptidoglycan and FABP-2 (intestinal fatty acid-binding protein 2) were observed in plasma of human subjects with type 1 diabetes mellitus (n=21) and type 2 diabetes mellitus (n=23) compared with nondiabetic controls (n=23). Using human retinal endothelial cells, we determined that peptidoglycan activates a noncanonical TLR-2 (Toll-like receptor 2) associated MyD88 (myeloid differentiation primary response protein 88)-ARNO (ADP-ribosylation factor nucleotide-binding site opener)-ARF6 (ADP-ribosylation factor 6) signaling cascade, resulting in destabilization of p120-catenin and internalization of VE-cadherin as a mechanism of deleterious impact of peptidoglycan on the endothelium. CONCLUSIONS: We demonstrate for the first time that the defect in gut barrier function and dysbiosis in ACE2-/y-Akita mice can be favorably impacted by exogenous administration of myeloid angiogenic cells.


Assuntos
Bactérias/metabolismo , Transplante de Medula Óssea , Permeabilidade Capilar , Diabetes Mellitus Tipo 2/cirurgia , Microbioma Gastrointestinal , Mucosa Intestinal/irrigação sanguínea , Mucosa Intestinal/microbiologia , Intestino Delgado/irrigação sanguínea , Intestino Delgado/microbiologia , Neovascularização Fisiológica , Peptidil Dipeptidase A/deficiência , Fator 6 de Ribosilação do ADP , Junções Aderentes/metabolismo , Enzima de Conversão de Angiotensina 2 , Animais , Células Cultivadas , Diabetes Mellitus Tipo 2/enzimologia , Diabetes Mellitus Tipo 2/microbiologia , Diabetes Mellitus Tipo 2/fisiopatologia , Modelos Animais de Doenças , Disbiose , Humanos , Mediadores da Inflamação/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Intestino Delgado/enzimologia , Intestino Delgado/patologia , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Peptidoglicano/metabolismo , Peptidil Dipeptidase A/genética , Recuperação de Função Fisiológica
7.
Proc Natl Acad Sci U S A ; 115(45): E10566-E10575, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30355767

RESUMO

Extracellular calcium flow through neuronal voltage-gated CaV2.2 calcium channels converts action potential-encoded information to the release of pronociceptive neurotransmitters in the dorsal horn of the spinal cord, culminating in excitation of the postsynaptic central nociceptive neurons. The CaV2.2 channel is composed of a pore-forming α1 subunit (CaVα1) that is engaged in protein-protein interactions with auxiliary α2/δ and ß subunits. The high-affinity CaV2.2α1⋅CaVß3 protein-protein interaction is essential for proper trafficking of CaV2.2 channels to the plasma membrane. Here, structure-based computational screening led to small molecules that disrupt the CaV2.2α1⋅CaVß3 protein-protein interaction. The binding mode of these compounds reveals that three substituents closely mimic the side chains of hot-spot residues located on the α-helix of CaV2.2α1 Site-directed mutagenesis confirmed the critical nature of a salt-bridge interaction between the compounds and CaVß3 Arg-307. In cells, compounds decreased trafficking of CaV2.2 channels to the plasma membrane and modulated the functions of the channel. In a rodent neuropathic pain model, the compounds suppressed pain responses. Small-molecule α-helical mimetics targeting ion channel protein-protein interactions may represent a strategy for developing nonopioid analgesia and for treatment of other neurological disorders associated with calcium-channel trafficking.


Assuntos
Bloqueadores dos Canais de Cálcio/farmacologia , Ativação do Canal Iônico/efeitos dos fármacos , Bibliotecas de Moléculas Pequenas/farmacologia , Animais , Bloqueadores dos Canais de Cálcio/farmacocinética , Feminino , Células HEK293 , Humanos , Transporte de Íons , Canais de Potássio Ativados por Cálcio de Condutância Alta/antagonistas & inibidores , Canais de Potássio Ativados por Cálcio de Condutância Alta/metabolismo , Camundongos , Neuralgia/prevenção & controle , Nociceptividade/efeitos dos fármacos , Ligação Proteica , Ratos , Ratos Sprague-Dawley , Bibliotecas de Moléculas Pequenas/farmacocinética
8.
J Biol Chem ; 294(8): 2935-2946, 2019 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-30587572

RESUMO

Estrogen hormones play an important role in controlling glucose homeostasis and pancreatic ß-cell function. Despite the significance of estrogen hormones for regulation of glucose metabolism, little is known about the roles of endogenous estrogen metabolites in modulating pancreatic ß-cell function. In this study, we evaluated the effects of major natural estrogen metabolites, catechol estrogens, on insulin secretion in pancreatic ß-cells. We show that catechol estrogens, hydroxylated at positions C2 and C4 of the steroid A ring, rapidly potentiated glucose-induced insulin secretion via a nongenomic mechanism. 2-Hydroxyestrone, the most abundant endogenous estrogen metabolite, was more efficacious in stimulating insulin secretion than any other tested catechol estrogens. In insulin-secreting cells, catechol estrogens produced rapid activation of calcium influx and elevation in cytosolic free calcium. Catechol estrogens also generated sustained elevations in cytosolic free calcium and evoked inward ion current in HEK293 cells expressing the transient receptor potential A1 (TRPA1) cation channel. Calcium influx and insulin secretion stimulated by estrogen metabolites were dependent on the TRPA1 activity and inhibited with the channel-specific pharmacological antagonists or the siRNA. Our results suggest the role of estrogen metabolism in a direct regulation of TRPA1 activity with potential implications for metabolic diseases.


Assuntos
Estrogênios de Catecol/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Secreção de Insulina/efeitos dos fármacos , Células Secretoras de Insulina/metabolismo , Canal de Cátion TRPA1/metabolismo , Animais , Células Cultivadas , Glucose/metabolismo , Humanos , Células Secretoras de Insulina/citologia , Células Secretoras de Insulina/efeitos dos fármacos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Ratos
9.
J Neuroinflammation ; 16(1): 21, 2019 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-30704505

RESUMO

BACKGROUND: The incidence of traumatic brain injuries (TBIs) is on the rise in the USA. Concussions, or mild TBIs without skull fracture, account for about 75% of all TBIs. Mild TBIs (mTBIs) lead to memory and cognitive deficits, headaches, intraocular pressure rises, axonal degeneration, neuroinflammation, and an array of cerebrovascular dysfunctions, including increased vascular permeability and decreased cerebral blood flow. It has been recently reported that besides vascular dysfunction in the cerebral circulation, mTBI may also cause a significant impairment of endothelial function in the systemic circulation, at least within mesenteric microvessels. In this study, we investigated whether mTBI affects endothelial function in aortas and determined the contribution of transient receptor potential canonical (TRPC) channels to modulating mTBI-associated endothelial dysfunction. METHODS: We used a model of closed-head mTBI in C57BL/6, 129S, 129S-C57BL/6-F2 mice, and 129S-TRPC1 and 129S-C57BL/6-TRPC6 knockout mice to determine the effect of mTBI on endothelial function in mouse aortas employing ex vivo isometric tension measurements. Aortic tissue was also analyzed using immunofluorescence and qRT-PCR for TRPC6 expression following mTBI. RESULTS: We show that in various strains of mice, mTBI induces a pronounced and long-lasting endothelial dysfunction in the aorta. Ablation of TRPC6 protects mice from mTBI-associated aortic endothelial dysfunction, while TRPC1 ablation does not impact brain injury-induced endothelial impairment in the aorta. Consistent with a role of TRPC6 activation following mTBI, we observed improved endothelial function in wild type control mice subjected to mTBI following 7-day in vivo treatment with larixyl acetate, an inhibitor of TRPC6 channels. Conversely, in vitro treatment with the pro-inflammatory endotoxin lipopolysaccharide, which activates endothelial TRPC6 in a Toll-like receptor type 4 (TLR4)-dependent manner, worsened aortic endothelial dysfunction in wild type mice. Lipopolysaccharide treatment in vitro failed to elicit endothelial dysfunction in TRPC6 knockout mice. No change in endothelial TRPC6 expression was observed 7 days following TBI. CONCLUSIONS: These data suggest that TRPC6 activation may be critical for inducing endothelial dysfunction following closed-head mTBI and that pharmacological inhibition of the channel may be a feasible therapeutic strategy for preventing mTBI-associated systemic endothelial dysfunction.


Assuntos
Acetatos/uso terapêutico , Lesões Encefálicas Traumáticas/complicações , Endotélio Vascular , Naftalenos/uso terapêutico , Fármacos Neuroprotetores/uso terapêutico , Canais de Cátion TRPC/antagonistas & inibidores , Doenças Vasculares/etiologia , Doenças Vasculares/prevenção & controle , Acetatos/farmacologia , Animais , Aorta Torácica/fisiopatologia , Traumatismos Cranianos Fechados/complicações , Contração Isométrica , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Naftalenos/farmacologia , Fármacos Neuroprotetores/farmacologia , Canais de Cátion TRPC/genética , Canal de Cátion TRPC6 , Receptor 4 Toll-Like/metabolismo , Vasodilatação/efeitos dos fármacos
10.
Stem Cells ; 36(9): 1430-1440, 2018 09.
Artigo em Inglês | MEDLINE | ID: mdl-29761600

RESUMO

Angiotensin-converting enzyme 2 (ACE2) is the primary enzyme of the vasoprotective axis of the renin angiotensin system (RAS). We tested the hypothesis that loss of ACE2 would exacerbate diabetic retinopathy by promoting bone marrow dysfunction. ACE2-/y were crossed with Akita mice, a model of type 1 diabetes. When comparing the bone marrow of the ACE2-/y -Akita mice to that of Akita mice, we observed a reduction of both short-term and long-term repopulating hematopoietic stem cells, a shift of hematopoiesis toward myelopoiesis, and an impairment of lineage- c-kit+ hematopoietic stem/progenitor cell (HS/PC) migration and proliferation. Migratory and proliferative dysfunction of these cells was corrected by exposure to angiotensin-1-7 (Ang-1-7), the protective peptide generated by ACE2. Over the duration of diabetes examined, ACE2 deficiency led to progressive reduction in electrical responses assessed by electroretinography and to increases in neural infarcts observed by fundus photography. Compared with Akita mice, ACE2-/y -Akita at 9-months of diabetes showed an increased number of acellular capillaries indicative of more severe diabetic retinopathy. In diabetic and control human subjects, CD34+ cells, a key bone marrow HS/PC population, were assessed for changes in mRNA levels for MAS, the receptor for Ang-1-7. Levels were highest in CD34+ cells from diabetics without retinopathy. Higher serum Ang-1-7 levels predicted protection from development of retinopathy in diabetics. Treatment with Ang-1-7 or alamandine restored the impaired migration function of CD34+ cells from subjects with retinopathy. These data support that activation of the protective RAS within HS/PCs may represents a therapeutic strategy for prevention of diabetic retinopathy. Stem Cells 2018;36:1430-1440.


Assuntos
Medula Óssea/metabolismo , Retinopatia Diabética/induzido quimicamente , Peptidil Dipeptidase A/efeitos adversos , Peptidil Dipeptidase A/deficiência , Enzima de Conversão de Angiotensina 2 , Animais , Modelos Animais de Doenças , Humanos , Camundongos
11.
Exp Eye Res ; 180: 86-91, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30557570

RESUMO

SLC4A11 mutations are associated with Fuchs' endothelial corneal dystrophy (FECD), congenital hereditary endothelial dystrophy (CHED) and Harboyan syndrome (endothelial dystrophy with auditory deficiency). Mice with genetically ablated Slc4a11 recapitulate CHED, exhibiting significant corneal edema and altered endothelial morphology. We recently demonstrated that SLC4A11 functions as an NH3 sensitive, electrogenic H+ transporter. Here, we investigated the properties of five clinically relevant SLC4A11 mutants: R125H, W240S, C386R, V507I and N693A, relative to wild type, expressed in a PS120 fibroblast cell line. The effect of these mutations on the NH4Cl-dependent transporter activity was investigated by intracellular pH and electrophysiology measurements. Relative to plasma membrane expression of NaK ATPase, there were no significant differences in plasma membrane SLC4A11 expression among each mutant and wild type. All mutants revealed a marked decrease in acidification in response to NH4Cl when compared to wild type, indicating a decreased H+ permeability in mutants. All mutants exhibited significantly reduced H+ currents at negative holding potentials as compared to wild type. Uniquely, the C386R and W240S mutants exhibited a different inward current profile upon NH4Cl challenges, suggesting an altered transport mode. Thus, our data suggest that these SLC4A11 mutants, rather than having impaired protein trafficking, show altered H+ flux properties.


Assuntos
Proteínas de Transporte de Ânions/metabolismo , Antiporters/genética , Membrana Celular/metabolismo , Distrofias Hereditárias da Córnea/genética , Mutação Puntual , Transporte Proteico/fisiologia , Cloreto de Amônio/metabolismo , Animais , Proteínas de Transporte de Ânions/genética , Linhagem Celular , Distrofias Hereditárias da Córnea/metabolismo , Cricetinae , Fibroblastos/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Mutagênese Sítio-Dirigida , Técnicas de Patch-Clamp , Transfecção
12.
Molecules ; 24(4): 775, 2019 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-30795543

RESUMO

Individuals with end-stage diabetic peripheral neuropathy present with decreased pain sensation. Transient receptor potential vanilloid type 1 (TRPV1) is implicated in pain signaling and resides on sensory dorsal root ganglion (DRG) neurons. We investigated the expression and functional activity of TRPV1 in DRG neurons of the Ins2+/Akita mouse at 9 months of diabetes using immunohistochemistry, live single cell calcium imaging, and whole-cell patch-clamp electrophysiology. 2',7'-Dichlorodihydrofluorescein diacetate (DCFH-DA) fluorescence assay was used to determine the level of Reactive Oxygen Species (ROS) in DRGs. Although TRPV1 expressing neuron percentage was increased in Ins2+/Akita DRGs at 9 months of diabetes compared to control, capsaicin-induced Ca2+ influx was smaller in isolated Ins2+/Akita DRG neurons, indicating impaired TRPV1 function. Consistently, capsaicin-induced Ca2+ influx was decreased in control DRG neurons cultured in the presence of 25 mM glucose for seven days versus those cultured with 5.5 mM glucose. The high glucose environment increased cytoplasmic ROS accumulation in cultured DRG neurons. Patch-clamp recordings revealed that capsaicin-activated currents decayed faster in isolated Ins2+/Akita DRG neurons as compared to those in control neurons. We propose that in poorly controlled diabetes, the accelerated rate of capsaicin-sensitive TRPV1 current decay in DRG neurons decreases overall TRPV1 activity and contributes to peripheral neuropathy.


Assuntos
Cálcio/metabolismo , Capsaicina/farmacologia , Neuropatias Diabéticas/metabolismo , Gânglios Espinais/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Dor/metabolismo , Canais de Cátion TRPV/metabolismo , Animais , Neuropatias Diabéticas/genética , Neuropatias Diabéticas/patologia , Modelos Animais de Doenças , Fluoresceínas/química , Corantes Fluorescentes/química , Gânglios Espinais/metabolismo , Gânglios Espinais/patologia , Regulação da Expressão Gênica , Glucose/farmacologia , Transporte de Íons/efeitos dos fármacos , Masculino , Potenciais da Membrana/efeitos dos fármacos , Potenciais da Membrana/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neurônios/metabolismo , Neurônios/patologia , Imagem Óptica , Dor/genética , Dor/fisiopatologia , Técnicas de Patch-Clamp , Cultura Primária de Células , Espécies Reativas de Oxigênio/metabolismo , Análise de Célula Única , Canais de Cátion TRPV/genética
13.
J Biol Chem ; 292(3): 898-911, 2017 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-27920205

RESUMO

Transient receptor potential canonical type 5 (TRPC5) is a Ca2+-permeable cation channel that is highly expressed in the brain and is implicated in motor coordination, innate fear behavior, and seizure genesis. The channel is activated by a signal downstream of the G-protein-coupled receptor (GPCR)-Gq/11-phospholipase C (PLC) pathway. In this study we aimed to identify the molecular mechanisms involved in regulating TRPC5 activity. We report that Arg-593, a residue located in the E4 loop near the TRPC5 extracellular Gd3+ binding site, is critical for conferring the sensitivity to GPCR-Gq/11-PLC-dependent gating on TRPC5. Indeed, guanosine 5'-O-(thiotriphosphate) and GPCR agonists only weakly activate the TRPC5R593A mutant, whereas the addition of Gd3+ rescues the mutant's sensitivity to GPCR-Gq/11-PLC-dependent gating. Computer modeling suggests that Arg-593 may cross-bridge the E3 and E4 loops, forming the "molecular fulcrum." While validating the model using site-directed mutagenesis, we found that the Tyr-542 residue is critical for establishing a functional Gd3+ binding site, the Tyr-541 residue participates in fine-tuning Gd3+-sensitivity, and that the Asn-584 residue determines Ca2+ permeability of the TRPC5 channel. This is the first report providing molecular insights into the molecular mechanisms regulating the sensitivity to GPCR-Gq/11-PLC-dependent gating of a receptor-operated channel.


Assuntos
Sinalização do Cálcio/fisiologia , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/metabolismo , Gadolínio/farmacocinética , Ativação do Canal Iônico/fisiologia , Modelos Biológicos , Canais de Cátion TRPC/metabolismo , Fosfolipases Tipo C/metabolismo , Substituição de Aminoácidos , Animais , Sinalização do Cálcio/efeitos dos fármacos , Subunidades alfa Gq-G11 de Proteínas de Ligação ao GTP/genética , Células HEK293 , Humanos , Ativação do Canal Iônico/efeitos dos fármacos , Camundongos , Mutagênese Sítio-Dirigida , Mutação de Sentido Incorreto , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Canais de Cátion TRPC/genética , Fosfolipases Tipo C/genética
14.
Arterioscler Thromb Vasc Biol ; 37(1): 75-83, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27856454

RESUMO

OBJECTIVE: Nucleotide P2Y2 receptor (P2Y2R) contributes to vascular inflammation by increasing vascular cell adhesion molecule-1 expression in endothelial cells (EC), and global P2Y2R deficiency prevents fatty streak formation in apolipoprotein E null (ApoE-/-) mice. Because P2Y2R is ubiquitously expressed in vascular cells, we investigated the contribution of endothelial P2Y2R in the pathogenesis of atherosclerosis. APPROACH AND RESULTS: EC-specific P2Y2R-deficient mice were generated by breeding VEcadherin5-Cre mice with the P2Y2R floxed mice. Endothelial P2Y2R deficiency reduced endothelial nitric oxide synthase activity and significantly altered ATP- and UTP (uridine 5'-triphosphate)-induced vasorelaxation without affecting vasodilatory responses to acetylcholine. Telemetric blood pressure and echocardiography measurements indicated that EC-specific P2Y2R-deficient mice did not develop hypertension. We investigated the role of endothelial P2Y2R in the development of atherosclerotic lesions by crossing the EC-specific P2Y2R knockout mice onto an ApoE-/- background and evaluated lesion development after feeding a standard chow diet for 25 weeks. Histopathologic examination demonstrated reduced atherosclerotic lesions in the aortic sinus and entire aorta, decreased macrophage infiltration, and increased smooth muscle cell and collagen content, leading to the formation of a subendothelial fibrous cap in EC-specific P2Y2R-deficient ApoE-/- mice. Expression and proteolytic activity of matrix metalloproteinase-2 was significantly reduced in atherosclerotic lesions from EC-specific P2Y2R-deficient ApoE-/- mice. Furthermore, EC-specific P2Y2R deficiency inhibited nitric oxide production, leading to significant increase in smooth muscle cell migration out of aortic explants. CONCLUSIONS: EC-specific P2Y2R deficiency reduces atherosclerotic burden and promotes plaque stability in ApoE-/- mice through impaired macrophage infiltration acting together with reduced matrix metalloproteinase-2 activity and increased smooth muscle cell migration.


Assuntos
Aorta Torácica/metabolismo , Doenças da Aorta/metabolismo , Apolipoproteínas E/deficiência , Aterosclerose/metabolismo , Células Endoteliais/metabolismo , Placa Aterosclerótica , Receptores Purinérgicos P2Y2/deficiência , Animais , Aorta Torácica/efeitos dos fármacos , Aorta Torácica/patologia , Aorta Torácica/fisiopatologia , Doenças da Aorta/genética , Doenças da Aorta/patologia , Doenças da Aorta/prevenção & controle , Apolipoproteínas E/genética , Aterosclerose/genética , Aterosclerose/patologia , Aterosclerose/prevenção & controle , Movimento Celular , Células Cultivadas , Colágeno/metabolismo , Modelos Animais de Doenças , Progressão da Doença , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/patologia , Fibrose , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Metaloproteinase 2 da Matriz/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Músculo Liso Vascular/fisiopatologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/patologia , Óxido Nítrico/metabolismo , Óxido Nítrico Sintase Tipo III/metabolismo , Agonistas do Receptor Purinérgico P2Y/farmacologia , Receptores Purinérgicos P2Y2/genética , Ruptura Espontânea , Transdução de Sinais , Vasodilatação/efeitos dos fármacos , Vasodilatadores/farmacologia
15.
Basic Res Cardiol ; 112(5): 54, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28756533

RESUMO

Coronary transient receptor potential canonical (TRPC) channel expression is elevated in metabolic syndrome (MetS). However, differential contribution of TRPCs to coronary pathology in MetS is not fully elucidated. We investigated the roles of TRPC1 and TRPC6 isoforms in coronary arteries of MetS pigs and determined whether long-term treatment with a mineralocorticoid receptor inhibitor, spironolactone, attenuates coronary TRPC expression and associated dysfunctions. MetS coronary arteries exhibited significant atherosclerosis, endothelial dysfunction, and increased histamine-induced contractions. Immunohistochemical studies revealed that TRPC6 immunostaining was significantly greater in the medial layer of MetS pig coronary arteries compared to that in Lean pigs, whereas little TRPC6 immunostaining was found in atheromas. Conversely, TRPC1 immunostaining was weak in the medial layer but strong in MetS atheromas, where it was predominantly localized to macrophages. Spironolactone treatment significantly decreased coronary TRPC expression and dysfunctions in MetS pigs. In vivo targeted delivery of the dominant-negative (DN)-TRPC6 cDNA to the coronary wall reduced histamine-induced calcium transients in the MetS coronary artery medial layer, implying a role for TRPC6 in mediating calcium influx in MetS coronary smooth muscles. Monocyte adhesion was increased in Lean pig coronary arteries cultured in the presence of aldosterone; and spironolactone antagonized this effect, suggesting that coronary mineralocorticoid receptor activation may regulate macrophage infiltration. TRPC1 expression in atheroma macrophages was associated with advanced atherosclerosis, whereas medial TRPC6 upregulation correlated with increased histamine-induced calcium transients and coronary contractility. We propose that long-term spironolactone treatment may be a therapeutic strategy to decrease TRPC expression and coronary pathology associated with MetS.


Assuntos
Doença da Artéria Coronariana/prevenção & controle , Vasos Coronários/efeitos dos fármacos , Síndrome Metabólica/tratamento farmacológico , Antagonistas de Receptores de Mineralocorticoides/administração & dosagem , Espironolactona/administração & dosagem , Canais de Cátion TRPC/efeitos dos fármacos , Canal de Cátion TRPC6/efeitos dos fármacos , Vasoconstrição/efeitos dos fármacos , Animais , Sinalização do Cálcio/efeitos dos fármacos , Células Cultivadas , Doença da Artéria Coronariana/genética , Doença da Artéria Coronariana/metabolismo , Doença da Artéria Coronariana/fisiopatologia , Vasos Coronários/metabolismo , Vasos Coronários/fisiopatologia , Modelos Animais de Doenças , Regulação para Baixo , Esquema de Medicação , Endotélio Vascular/efeitos dos fármacos , Endotélio Vascular/metabolismo , Endotélio Vascular/fisiopatologia , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Síndrome Metabólica/genética , Síndrome Metabólica/metabolismo , Síndrome Metabólica/fisiopatologia , Músculo Liso Vascular/efeitos dos fármacos , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/fisiopatologia , Suínos , Porco Miniatura , Canais de Cátion TRPC/metabolismo , Canal de Cátion TRPC6/genética , Canal de Cátion TRPC6/metabolismo , Fatores de Tempo , Técnicas de Cultura de Tecidos
16.
Proc Natl Acad Sci U S A ; 111(35): 12871-6, 2014 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-25143588

RESUMO

Lowe syndrome is a rare X-linked congenital disease that presents with congenital cataracts and glaucoma, as well as renal and cerebral dysfunction. OCRL, an inositol polyphosphate 5-phosphatase, is mutated in Lowe syndrome. We previously showed that OCRL is involved in vesicular trafficking to the primary cilium. Primary cilia are sensory organelles on the surface of eukaryotic cells that mediate mechanotransduction in the kidney, brain, and bone. However, their potential role in the trabecular meshwork (TM) in the eye, which regulates intraocular pressure, is unknown. Here, we show that TM cells, which are defective in glaucoma, have primary cilia that are critical for response to pressure changes. Primary cilia in TM cells shorten in response to fluid flow and elevated hydrostatic pressure, and promote increased transcription of TNF-α, TGF-ß, and GLI1 genes. Furthermore, OCRL is found to be required for primary cilia to respond to pressure stimulation. The interaction of OCRL with transient receptor potential vanilloid 4 (TRPV4), a ciliary mechanosensory channel, suggests that OCRL may act through regulation of this channel. A novel disease-causing OCRL allele prevents TRPV4-mediated calcium signaling. In addition, TRPV4 agonist GSK 1016790A treatment reduced intraocular pressure in mice; TRPV4 knockout animals exhibited elevated intraocular pressure and shortened cilia. Thus, mechanotransduction by primary cilia in TM cells is implicated in how the eye senses pressure changes and highlights OCRL and TRPV4 as attractive therapeutic targets for the treatment of glaucoma. Implications of OCRL and TRPV4 in primary cilia function may also shed light on mechanosensation in other organ systems.


Assuntos
Pressão Intraocular/fisiologia , Mecanotransdução Celular/fisiologia , Monoéster Fosfórico Hidrolases/metabolismo , Canais de Cátion TRPV/metabolismo , Animais , Cadáver , Criança , Cílios/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Síndrome Oculocerebrorrenal/metabolismo , Síndrome Oculocerebrorrenal/fisiopatologia , Sensação/fisiologia , Malha Trabecular/citologia , Malha Trabecular/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
17.
J Biol Chem ; 290(27): 16894-905, 2015 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-26018076

RESUMO

SLC4A11 has been proposed to be an electrogenic membrane transporter, permeable to Na(+), H(+) (OH(-)), bicarbonate, borate, and NH4 (+). Recent studies indicate, however, that neither bicarbonate or borate is a substrate. Here, we examined potential NH4 (+), Na(+), and H(+) contributions to electrogenic ion transport through SLC4A11 stably expressed in Na(+)/H(+) exchanger-deficient PS120 fibroblasts. Inward currents observed during exposure to NH4Cl were determined by the [NH3]o, not [NH4 (+)]o, and current amplitudes varied with the [H(+)] gradient. These currents were relatively unaffected by removal of Na(+), K(+), or Cl(-) from the bath but could be reduced by inclusion of NH4Cl in the pipette solution. Bath pH changes alone did not generate significant currents through SLC4A11, except immediately following exposure to NH4Cl. Reversal potential shifts in response to changing [NH3]o and pHo suggested an NH3/H(+)-coupled transport mode for SLC4A11. Proton flux through SLC4A11 in the absence of ammonia was relatively small, suggesting that ammonia transport is of more physiological relevance. Methylammonia produced currents similar to NH3 but with reduced amplitude. Estimated stoichiometry of SLC4A11 transport was 1:2 (NH3/H(+)). NH3-dependent currents were insensitive to 10 µM ethyl-isopropyl amiloride or 100 µM 4,4'- diisothiocyanatostilbene-2,2'-disulfonic acid. We propose that SLC4A11 is an NH3/2H(+) co-transporter exhibiting unique characteristics.


Assuntos
Amônia/metabolismo , Proteínas de Transporte de Ânions/metabolismo , Antiporters/metabolismo , Hidrogênio/metabolismo , Simportadores/metabolismo , Proteínas de Transporte de Ânions/química , Proteínas de Transporte de Ânions/genética , Antiporters/química , Antiporters/genética , Bicarbonatos/metabolismo , Humanos , Transporte de Íons , Prótons , Simportadores/química , Simportadores/genética
18.
J Biol Chem ; 289(14): 9600-10, 2014 Apr 04.
Artigo em Inglês | MEDLINE | ID: mdl-24569998

RESUMO

Furanocoumarin imperatorin is the major active component of Angelica dahurica root extracts, widely used in traditional medicine to treat headache, toothache, and orbital eye pain. In this study, we investigated the mechanisms that may underlie the pain-relieving effects of the compound. We found that imperatorin significantly inhibited formalin- and capsaicin-induced nocifensive responses but did not alter baseline thermal withdrawal thresholds in the rat. We established that imperatorin is a weak agonist of TRPV1, a channel implicated in detecting several noxious stimuli, exhibiting a 50% effective concentration (EC50) of 12.6 ± 3.2 µM. A specific TRPV1 antagonist, JNJ-17203212 (0.5 µM), potently inhibited imperatorin-induced TRPV1 activation. Site-directed mutagenesis studies revealed that imperatorin most likely acted via a site adjacent to or overlapping with the TRPV1 capsaicin-binding site. TRPV1 recovery from desensitization was delayed in the presence of imperatorin. Conversely, imperatorin sensitized TRPV1 to acid activation but did not affect the current amplitude and/or the activation-inactivation properties of Na(v)1.7, a channel important for transmission of nociceptive information. Thus, our data indicate that furanocoumarins represent a novel group of TRPV1 modulators that may become important lead compounds in the drug discovery process aimed at developing new treatments for pain management.


Assuntos
Analgésicos/farmacologia , Fármacos Dermatológicos/farmacologia , Furocumarinas/farmacologia , Canais de Cátion TRPV/agonistas , Analgésicos/química , Angelica/química , Animais , Fármacos Dermatológicos/química , Furocumarinas/química , Células HEK293 , Humanos , Camundongos , Camundongos Knockout , Canal de Sódio Disparado por Voltagem NAV1.7/genética , Canal de Sódio Disparado por Voltagem NAV1.7/metabolismo , Nociceptividade/efeitos dos fármacos , Nociceptividade/fisiologia , Manejo da Dor/métodos , Medição da Dor , Ratos , Canais de Cátion TRPV/genética , Canais de Cátion TRPV/metabolismo
19.
Atherosclerosis ; 395: 117613, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38889566

RESUMO

BACKGROUND AND AIMS: Vascular smooth muscle cell (VSMC) dedifferentiation contributes substantively to vascular disease. VSMCs spontaneously release low levels of ATP that modulate vessel contractility, but it is unclear if autocrine ATP signaling in VSMCs is critical to the maintenance of the VSMC contractile phenotype. METHODS: We used pharmacological inhibitors to block ATP release in human aortic smooth muscle cells (HASMCs) for studying changes in VSMC differentiation marker gene expression. We employed RNA interference and generated mice with SMC-specific inducible deletion of the P2Y2 receptor (P2Y2R) gene to evaluate resulting phenotypic alterations. RESULTS: HASMCs constitutively release low levels of ATP that when blocked results in a significant decrease in VSMC differentiation marker gene expression, including smooth muscle actin (SMA), smooth muscle myosin heavy chain (SMMHC), SM-22α and calponin. Basal release of ATP represses transcriptional activation of the Krüppel-Like Factor 4 (KFL4) thereby preventing platelet-derived growth factor-BB (PDGF-BB) from inhibiting expression of SMC contractile phenotype markers. SMC-restricted conditional deletion of P2Y2R evoked dedifferentiation characterized by decreases in aortic contractility and contractile phenotype markers expression. This loss was accompanied by a transition to the synthetic phenotype with the acquisition of extracellular matrix (ECM) proteins characteristic of dedifferentiation, such as osteopontin and vimentin. CONCLUSIONS: Our data establish the first direct evidence that an autocrine ATP release mechanism maintains SMC cytoskeletal protein expression by inhibiting VSMCs from transitioning to a synthetic phenotype, and further demonstrate that activation of the P2Y2R by basally released ATP is required for maintenance of the differentiated VSMC phenotype.


Assuntos
Trifosfato de Adenosina , Becaplermina , Músculo Liso Vascular , Miócitos de Músculo Liso , Fenótipo , Receptores Purinérgicos P2Y2 , Animais , Receptores Purinérgicos P2Y2/metabolismo , Receptores Purinérgicos P2Y2/genética , Músculo Liso Vascular/metabolismo , Miócitos de Músculo Liso/metabolismo , Humanos , Trifosfato de Adenosina/metabolismo , Camundongos , Becaplermina/metabolismo , Becaplermina/farmacologia , Células Cultivadas , Diferenciação Celular , Transdução de Sinais , Proteínas Proto-Oncogênicas c-sis/metabolismo , Proteínas dos Microfilamentos/metabolismo , Proteínas dos Microfilamentos/genética , Actinas/metabolismo , Proteínas Musculares/metabolismo , Proteínas Musculares/genética , Calponinas , Camundongos Knockout , Aorta/metabolismo , Aorta/citologia , Interferência de RNA , Desdiferenciação Celular , Cadeias Pesadas de Miosina/metabolismo , Cadeias Pesadas de Miosina/genética , Comunicação Autócrina
20.
Life Sci ; 345: 122584, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38527668

RESUMO

AIM: Sepsis is a life-threatening clinical syndrome comprising multiorgan dysfunctions caused by a disproportionate body immune response. There are several animal sepsis models which are based on cecum ligation, cecal puncture, and cecum slurry injection. The major limitation of all current sepsis models is the high variability owing to the variable degree of ligation, puncture and inconsistent microbial composition used for sepsis initiation. The primary objective of this work is to demonstrate the feasibility of a standardized method for sepsis development. MATERIALS AND METHODS: The cecal slurry bacterial culture was developed and preserved in glycerol stocks. Antibiotics aztreonam and vancomycin were used for generating several defined, enriched cecal slurry bacterial cultures. Mice survival was assessed until 48 hrs post injection, and the tissue samples were collected after 10 hrs from sepsis initiation. KEY FINDINGS: The results indicate that increasing polymicrobial load resulted in lower survival rates and was associated with the higher number of infiltrating immune cells and necrosis. H&E (haematoxylin & eosin) staining & serum markers revealed that septic mice exhibited increased inflammation and significant damage to the liver and kidneys. The defined Gram-negative and Gram-positive specific cecal slurry bacterial cultures were developed and their efficiency in inducing sepsis was characterized. SIGNIFICANCE: Enriched cecal slurry bacterial cultures can be stored in glycerol stocks at -80 °C. This has an ethical advantage of avoiding unnecessary animal euthanasia for each experiment and provides a standardization capability of sepsis development.


Assuntos
Glicerol , Sepse , Camundongos , Animais , Injeções Intraperitoneais , Sepse/tratamento farmacológico , Inflamação/complicações , Modelos Animais de Doenças , Ceco , Ligadura/efeitos adversos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA