Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Int J Mol Sci ; 25(1)2023 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-38203663

RESUMO

Previously, we demonstrated that the 177Lu-labeled single-chain variable fragment of an anti-prostate-specific membrane antigen (PSMA) IgG D2B antibody (scFvD2B) showed higher prostate cancer (PCa) cell uptake and tumor radiation doses compared to 177Lu-labeled Glu-ureide-based PSMA inhibitory peptides. To obtain a 99mTc-/177Lu-scFvD2B theranostic pair, this research aimed to synthesize and biochemically characterize a novel 99mTc-scFvD2B radiotracer. The scFvD2B-Tag and scFvD2B antibody fragments were produced and purified. Then, two HYNIC derivatives, HYNIC-Gly-Gly-Cys-NH2 (HYNIC-GGC) and succinimidyl-HYNIC (S-HYNIC), were used to conjugate the scFvD2B-Tag and scFvD2B isoforms, respectively. Subsequently, chemical characterization, immunoreactivity tests (affinity and specificity), radiochemical purity tests, stability tests in human serum, cellular uptake and internalization in LNCaP(+), PC3-PIP(++) or PC3(-) PCa cells of the resulting unlabeled HYNIC-scFvD2B conjugates (HscFv) and 99mTc-HscFv agents were performed. The results showed that incorporating HYNIC as a chelator did not affect the affinity, specificity or stability of scFvD2B. After purification, the radiochemical purity of 99mTc-HscFv radiotracers was greater than 95%. A two-sample t-test of 99mTc-HscFv1 and 99mTc-HscFv1 uptake in PC3-PIP vs. PC3 showed a p-value < 0.001, indicating that the PSMA receptor interaction of 99mTc-HscFv agents was statistically significantly higher in PSMA-positive cells than in the negative controls. In conclusion, the results of this research warrant further preclinical studies to determine whether the in vivo pharmacokinetics and tumor uptake of 99mTc-HscFv still offer sufficient advantages over HYNIC-conjugated peptides to be considered for SPECT/PSMA imaging.


Assuntos
Neoplasias da Próstata , Compostos Radiofarmacêuticos , Humanos , Masculino , Neoplasias da Próstata/diagnóstico por imagem , Tomografia Computadorizada de Emissão de Fóton Único , Anticorpos , Fragmentos de Imunoglobulinas
2.
Nanomaterials (Basel) ; 14(3)2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38334567

RESUMO

Injectable colloidal solutions of lanthanide oxides (nanoparticles between 10 and 100 nm in size) have demonstrated high biocompatibility and no toxicity when the nanoparticulate units are functionalized with specific biomolecules that molecularly target various proteins in the tumor microenvironment. Among the proteins successfully targeted by functionalized lanthanide nanoparticles are folic receptors, fibroblast activation protein (FAP), gastrin-releasing peptide receptor (GRP-R), prostate-specific membrane antigen (PSMA), and integrins associated with tumor neovasculature. Lutetium, samarium, europium, holmium, and terbium, either as lanthanide oxide nanoparticles or as nanoparticles doped with lanthanide ions, have demonstrated their theranostic potential through their ability to generate molecular images by magnetic resonance, nuclear, optical, or computed tomography imaging. Likewise, photodynamic therapy, targeted radiotherapy (neutron-activated nanoparticles), drug delivery guidance, and image-guided tumor therapy are some examples of their potential therapeutic applications. This review provides an overview of cancer theranostics based on lanthanide nanoparticles coated with specific peptides, ligands, and proteins targeting the tumor microenvironment.

3.
J Pharm Sci ; 113(7): 1907-1918, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38369021

RESUMO

Small interfering RNAs (siRNAs) have the ability to induce selective gene silencing, although siRNAs are vulnerable to degradation in vivo. Various active pharmaceutical ingredients (APIs) are currently used as effective therapeutics in the treatment of cancer. However, routes of administration are limited due to their physicochemical and biopharmaceutical properties. This research aimed to develop oral pharmaceutical formulations based on self-nanoemulsifying drug delivery systems (SNEDDS) for optimal transport and co-delivery of siRNAs related to cancer and APIs. Formulations were developed using optimal mixing design (Design-Expert 11 software) for SNEDDS loading with siRNA (water/oil emulsion), API (oil/water emulsion), and siRNA-API (multiphase water/oil/water emulsion). The final formulations were characterized physicochemically and biologically. The nanosystems less than 50 nm in size had a drug loading above 48 %. The highest drug release occurred at intestinal pH, allowing drug protection in physiological fluids. SNEDDS-siRNA-APIs showed a twofold toxicity effect than APIs in solution and higher transfection and internalization of siRNA in cancer cells with respect to free siRNAs. In the duodenum, higher permeability was observed with SNEDDS-API than with the API solution, as determined by ex-vivo fluorescence microscopy. The multifunctional formulation based on SNEDDS was successfully prepared, siRNA, hydrophobic chemotherapeutics (doxorubicin, valrubicin and methotrexate) and photosensitizers (rhodamine b and protoporphyrin IX) agents were loaded, using a chitosan-RNA core, and Labrafil® M 1944 CS, Cremophor® RH40, phosphatidylcholine shell, forming stable hybrid SNEDDS as multiphasic emulsion, suitable as co-delivery system with a potent anticancer activity.


Assuntos
Antineoplásicos , Sistemas de Liberação de Medicamentos , Emulsões , RNA Interferente Pequeno , RNA Interferente Pequeno/administração & dosagem , RNA Interferente Pequeno/química , Humanos , Antineoplásicos/administração & dosagem , Antineoplásicos/química , Antineoplásicos/farmacologia , Sistemas de Liberação de Medicamentos/métodos , Nanopartículas/química , Animais , Linhagem Celular Tumoral , Liberação Controlada de Fármacos
4.
Pharmaceutics ; 16(4)2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38675193

RESUMO

Recently, we reported a new fibroblast activation protein (FAP) inhibitor radiopharmaceutical based on the 99mTc-((R)-1-((6-hydrazinylnicotinoyl)-D-alanyl) pyrrolidin-2-yl) boronic acid (99mTc-HYNIC-D-Alanine-BoroPro)(99mTc-HYNIC-iFAP) structure for tumor microenvironment SPECT imaging. This research aimed to synthesize 68Ga-[2,2',2″,2‴-(2-(4-(2-(5-(((S)-1-((S)-2-boronopyrrolidin-1-yl)-1-oxopropan-2-yl)carbamoyl)pyridin-2-yl)hydrazine-1-carbothioamido)benzyl)-1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrayl)tetraacetic acid] (68Ga-DOTA-D-Alanine-BoroPro)(68Ga-iFAP) as a novel radiotracer for PET imaging and evaluate its usefulness for FAP expression in malignant and non-malignant tissues. The coupling of p-SCN-benzene DOTA with HYNIC-iFAP was used for the chemical synthesis and further labeling with 68Ga. Radiochemical purity was verified by radio-HPLC. The specificity of 68Ga-iFAP was evaluated in HCT116 cells, in which FAP expression was verified by immunofluorescence and Western blot. Biodistribution and biokinetic studies were performed in murine models. 68Ga-iFAP uptake at the myocardial level was assessed in mice with induced infarction. First-in-human images of 68Ga-iFAP in healthy subjects and patients with myocardial infarction, glioblastoma, prostate cancer, and breast cancer were also obtained. DOTA-D-Alanine BoroPro was prepared with a chemical purity of 98% and was characterized by UPLC mass spectroscopy, FT-IR, and UV-vis. The 68Ga-iFAP was obtained with a radiochemical purity of >95%. In vitro and in vivo studies demonstrated 68Ga-iFAP-specific recognition for FAP, rapid renal elimination, and adequate visualization of the glioblastoma, breast tumor, prostate cancer, and myocardial infarction sites. The results of this research justify further dosimetry and clinical trials to establish the specificity and sensitivity of 68Ga-iFAP PET for FAP expression imaging.

5.
Pharmaceutics ; 15(12)2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-38140003

RESUMO

Recent cancer therapies have focused on reducing immune suppression in the tumor microenvironment to prevent cancer progression and metastasis. PD-1 is a checkpoint protein that stops the immune response and is expressed on immune T cells. Cancer cells express a PD-1 ligand (PD-L1) to bind to the T-cell surface and activate immunosuppressive pathways. This study aimed to design, synthesize, and evaluate a 99mTc-labeled PD-L1-targeting cyclic peptide inhibitor (99mTc-iPD-L1) as a novel SPECT radiopharmaceutical for PD-L1 expression imaging. AutoDock software (version 1.5) was used to perform molecular docking for affinity calculations. The chemical synthesis was based on the coupling reaction of 6-hydrazinylpyridine-3-carboxylic acid with a 14-amino-acid cyclic peptide. iPD-L1 was prepared for 99mTc labeling. Radio-HPLC was used to verify radiochemical purity. The stability of the radiopeptide in human serum was evaluated by HPLC. iPD-L1 specificity was assessed by SDS-PAGE. [99mTc]Tc-iPD-L1 cellular uptake in PD-L1-positive cancer cells (HCC827 and HCT116) and biodistribution in mice with induced tumors were also performed. One patient with advanced plantar malignant melanoma received [99mTc]Tc-iPD-L1. The iPD-L1 ligand (AutoDock affinity: -6.7 kcal/mol), characterized by UPLC mass, FT-IR, and UV-Vis spectroscopy, was obtained with a chemical purity of 97%. The [99mTc]Tc-iPD-L1 was prepared with a radiochemical purity of >90%. In vitro and in vivo analyses demonstrated [99mTc]Tc-iPD-L1 stability (>90% at 24 h) in human serum, specific recognition for PD-L1, high uptake by the tumor (6.98 ± 0.89% ID/g at 1 h), and rapid hepatobiliary and kidney elimination. [99mTc]Tc-iPD-L1 successfully detected PD-L1-positive lesions in a patient with plantar malignant melanoma. The results obtained in this study warrant further dosimetric and clinical studies to determine the sensitivity and specificity of [99mTc]Tc-iPD-L1/SPECT for PD-L1 expression imaging.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA