Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
1.
Arch Biochem Biophys ; 758: 110068, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38909835

RESUMO

Affinity maturation increases antigen-binding affinity and specificity of antibodies by somatic hypermutation. Various monoclonal antibodies against (4-hydroxy-3-nitrophenyl)acetyl (NP) were obtained during affinity maturation. Among them, highly matured anti-NP antibodies, such as E11 and E3, possess Cys96H and Cys100H in the complementarity-determining region 3 of the heavy chain, which would form a disulfide bond. In this study, we evaluated the effects of disulfide bonds on antigen binding by generating single-chain Fv (scFv) antibodies of E11 and its mutants, E11_C96KH/C100EH and E11_C96KH/C100QH, and determined their antigen-binding thermodynamics and kinetics. The binding affinities of the Cys mutants were lower than that of E11 scFv, indicating that the disulfide bond contributed to antigen binding, especially for stable complex formation. This was also supported by the decreased affinity of E11 scFv in the presence of a reducing agent. The crystal structures of NP-free and NP-bound E11 scFvs were determined at high resolution, showing the existence of a disulfide bond between Cys96H and Cys100H, and the antigen recognition mechanism, which could be compared with those of other anti-NP antibodies, such as germline-type N1G9 and matured-type C6, as reported previously. These structures could explain the molecular basis of changes in antigen-binding affinity and thermal stability in the absence or presence of antigens. Small-angle X-ray scattering further showed a local conformational change in E11 scFv upon antigen binding in solution.


Assuntos
Afinidade de Anticorpos , Regiões Determinantes de Complementaridade , Dissulfetos , Anticorpos de Cadeia Única , Dissulfetos/química , Anticorpos de Cadeia Única/química , Anticorpos de Cadeia Única/imunologia , Anticorpos de Cadeia Única/genética , Regiões Determinantes de Complementaridade/química , Humanos , Anticorpos Monoclonais/química , Anticorpos Monoclonais/imunologia , Animais , Termodinâmica , Cinética , Cristalografia por Raios X , Modelos Moleculares
2.
Int J Mol Sci ; 24(18)2023 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-37762021

RESUMO

Although many protein structures have been determined at atomic resolution, the majority of them are static and represent only the most stable or averaged structures in solution. When a protein binds to its ligand, it usually undergoes fluctuation and changes its conformation. One attractive method for obtaining an accurate view of proteins in solution, which is required for applications such as the rational design of proteins and structure-based drug design, is diffracted X-ray tracking (DXT). DXT can detect the protein structural dynamics on a timeline via gold nanocrystals attached to the protein. Here, the structure dynamics of single-chain Fv antibodies, helix bundle-forming de novo designed proteins, and DNA-binding proteins in both ligand-unbound and ligand-bound states were analyzed using the DXT method. The resultant mean square angular displacements (MSD) curves in both the tilting and twisting directions clearly demonstrated that structural fluctuations were suppressed upon ligand binding, and the binding energies determined using the angular diffusion coefficients from the MSD agreed well with the binding thermodynamics determined using isothermal titration calorimetry. In addition, the size of gold nanocrystals is discussed, which is one of the technical concerns of DXT.


Assuntos
Proteínas de Ligação a DNA , Ouro , Raios X , Ligantes , Radiografia
3.
Chembiochem ; 23(2): e202100435, 2022 01 19.
Artigo em Inglês | MEDLINE | ID: mdl-34698422

RESUMO

Natural aldolase enzymes and created retro-aldolase protein catalysts often catalyze both aldol and retro-aldol reactions depending on the concentrations of the reactants and the products. Here, we report that the directionality of protein catalysts can be altered by replacing one amino acid. The protein catalyst derived from a scaffold of a previously reported retro-aldolase catalyst, catalyzed aldol reactions more efficiently than the previously reported retro-aldolase catalyst. The retro-aldolase catalyst efficiently catalyzed the retro-aldol reaction but was less efficient in catalyzing the aldol reaction. The results indicate that protein catalysts with varying levels of directionality in usually reversibly catalyzed aldol and retro-aldol reactions can be generated from the same protein scaffold.


Assuntos
Aldeídos/metabolismo , Proteínas/metabolismo , Catálise , Estereoisomerismo
4.
Bioorg Med Chem Lett ; 78: 129049, 2022 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-36356833

RESUMO

Binding of adaptor molecules, such as growth factor receptor-bound protein 2 (Grb2) and phosphoinositide 3-kinase (PI3K), to the cytoplasmic region of CD28 is critical for T-cell activation. The Src homology 2 (SH2) domains of Grb2 and PI3K interact with the cytoplasmic region, including phosphorylated Tyr, of CD28. We found that trisubstituted carboranes efficiently increased the proliferation of T cells obtained from C57BL/6 mice. The carboranes specifically increased the binding of Grb2 Src homology 2 (SH2) to CD28-derived phosphopeptide but decreased the binding of PI3K C-terminal SH2 (cSH2). Based on the crystal structures of CD28-derived phosphopeptides complexed with Grb2 SH2 and PI3K cSH2, the bound structures of compound 4 (CRL266481) were modeled to determine the molecular mechanism of the regulation.


Assuntos
Antígenos CD28 , Domínios de Homologia de src , Camundongos , Animais , Camundongos Endogâmicos C57BL , Fosfatidilinositol 3-Quinases , Fosfatidilinositol 3-Quinase
5.
Proteins ; 89(5): 502-511, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33340163

RESUMO

The cutinase-like enzyme from the thermophile Saccharomonospora viridis AHK190, Cut190, is a good candidate to depolymerize polyethylene terephthalate (PET) efficiently. We previously developed a mutant of Cut190 (S226P/R228S), which we designated as Cut190* that has both increased activity and stability and solved its crystal structure. Recently, we showed that mutation of D250C/E296C on one of the Ca2+ -binding sites resulted in a higher thermal stability while retaining its polyesterase activity. In this study, we solved the crystal structures of Cut190* mutants, Q138A/D250C-E296C/Q123H/N202H, designated as Cut190*SS, and its inactive S176A mutant, Cut190*SS_S176A, at high resolution. The overall structures were similar to those of Cut190* and Cut190*S176A reported previously. As expected, Cys250 and Cys296 were closely located to form a disulfide bond, which would assuredly contribute to increase the stability. Isothermal titration calorimetry experiments and 3D Reference Interaction Site Model calculations showed that the metal-binding properties of the Cut190*SS series were different from those of the Cut190* series. However, our results show that binding of Ca2+ to the weak binding site, site 1, would be retained, enabling Cut190*SS to keep its ability to use Ca2+ to accelerate the conformational change from the closed (inactive) to the open (active) form. While increasing the thermal stability, Cut190*SS could still express its enzymatic function. Even after incubation at 70°C, which corresponds to the glass transition temperature of PET, the enzyme retained its activity well, implying a high applicability for industrial PET depolymerization using Cut190*SS.


Assuntos
Actinobacteria/química , Proteínas de Bactérias/química , Cálcio/química , Hidrolases de Éster Carboxílico/química , Poluentes Ambientais/química , Polietilenotereftalatos/química , Actinobacteria/enzimologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Cálcio/metabolismo , Hidrolases de Éster Carboxílico/genética , Hidrolases de Éster Carboxílico/metabolismo , Clonagem Molecular , Cristalografia por Raios X , Cisteína/química , Cisteína/metabolismo , Dissulfetos/química , Dissulfetos/metabolismo , Poluentes Ambientais/metabolismo , Estabilidade Enzimática , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Vetores Genéticos/química , Vetores Genéticos/metabolismo , Temperatura Alta , Hidrólise , Modelos Moleculares , Mutação , Polietilenotereftalatos/metabolismo , Ligação Proteica , Conformação Proteica , Domínios e Motivos de Interação entre Proteínas , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Especificidade por Substrato
6.
Anal Biochem ; 629: 114312, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34302799

RESUMO

The monoclonal antibody G2 specifically recognizes different peptides. The single-chain Fv (scFv) antibodies of G2 covalently linked to antigen peptides, Pep18mer and Pep395, via a flexible linker were expressed in Escherichia coli in the insoluble fraction, and were solubilized using guanidine HCl, followed by refolding. We analyzed the folding thermodynamics of the refolded proteins, purified as monomers using size-exclusion chromatography (SEC). The results of the differential scanning calorimetry (DSC) showed that the thermal stabilities of antigen peptide-linked G2 scFvs were higher than those of antigen-free G2 scFv in the absence or presence of antigen peptides. The folding thermodynamics further indicated how the antigen-antibody affinity affect the intramolecular interactions. The combination of SEC and DSC experiments could confirm the folding correctness of antigen peptide-linked G2 scFvs and could be applied for "structural screening" of refolded proteins in the case that the "functional screening" like antigen binding is difficult to apply. The present method to covalently link the peptide would contribute to the stable complex structure, and would be widely applied to other antibodies recognizing peptide antigens.


Assuntos
Antígenos/química , Peptídeos/química , Anticorpos de Cadeia Única/química , Sequência de Aminoácidos , Afinidade de Anticorpos , Cromatografia em Gel , Escherichia coli/genética , Humanos , Conformação Proteica , Dobramento de Proteína , Relação Estrutura-Atividade , Termodinâmica
7.
Biosci Biotechnol Biochem ; 84(2): 358-364, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31662101

RESUMO

Evaluation of the molecular mechanisms by which an antibody recognizes a specific antigen could help in better understanding of the protein recognition mechanisms. We previously showed that anti-hen egg lysozyme (HEL) monoclonal antibody, HyC1, recognized the structural and hydrodynamic change in HEL. Here, we generated HyC1 single-chain Fv (scFv), and characterized it using different structural and biophysical methods. Similar to HyC1 monoclonal antibody, HyC1 scFv could recognize native HEL from carboxymethylated Cys6 and Cys127 HEL (CM6,127-HEL). Comparison of the binding thermodynamics of HyC1 scFv between HEL and CM6,127-HEL showed that the binding enthalpy change was different, while the binding entropy was remained unchanged. The results indicated that the fluctuation of the residual native structure in both HEL and CM6,127-HEL was similar. The NMR experiments for 15N-labeled HyC1 scFv indicated that the flexibility of HyC1 scFv decreased upon the binding to HEL.


Assuntos
Muramidase/imunologia , Anticorpos de Cadeia Única/imunologia , Animais , Calorimetria , Espectroscopia de Ressonância Magnética , Muramidase/química , Conformação Proteica , Anticorpos de Cadeia Única/química , Ressonância de Plasmônio de Superfície , Termodinâmica
8.
Nucleic Acids Res ; 46(5): 2548-2559, 2018 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-29390145

RESUMO

Mg2+ ion stimulates the DNA strand exchange reaction catalyzed by RecA, a key step in homologous recombination. To elucidate the molecular mechanisms underlying the role of Mg2+ and the strand exchange reaction itself, we investigated the interaction of RecA with Mg2+ and sought to determine which step of the reaction is affected. Thermal stability, intrinsic fluorescence, and native mass spectrometric analyses of RecA revealed that RecA binds at least two Mg2+ ions with KD ≈ 2 mM and 5 mM. Deletion of the C-terminal acidic tail of RecA made its thermal stability and fluorescence characteristics insensitive to Mg2+ and similar to those of full-length RecA in the presence of saturating Mg2+. These observations, together with the results of a molecular dynamics simulation, support the idea that the acidic tail hampers the strand exchange reaction by interacting with other parts of RecA, and that binding of Mg2+ to the tail prevents these interactions and releases RecA from inhibition. We observed that binding of the first Mg2+ stimulated joint molecule formation, whereas binding of the second stimulated progression of the reaction. Thus, RecA is actively involved in the strand exchange step as well as bringing the two DNAs close to each other.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Proteínas de Escherichia coli/metabolismo , Magnésio/metabolismo , Recombinases Rec A/metabolismo , Cátions Bivalentes , DNA/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Escherichia coli/química , Espectrometria de Massas , Simulação de Dinâmica Molecular , Ligação Proteica , Dobramento de Proteína , Estabilidade Proteica , Recombinases Rec A/química , Deleção de Sequência
9.
Biochemistry ; 58(27): 2987-2995, 2019 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-31243995

RESUMO

For years, antibodies (Abs) have been used as a paradigm for understanding how protein structure contributes to molecular recognition. However, with the ability to evolve Abs that recognize specific chromophores, they also have great potential as models for how protein dynamics contribute to molecular recognition. We previously raised murine Abs to different chromophores and, with the use of three-pulse photon echo peak shift spectroscopy, demonstrated that the immune system is capable of producing Abs with widely varying flexibility. We now report the characterization of the complexes formed between two Abs, 5D11 and 10A6, and the chromophoric ligand that they were evolved to recognize, 8-methoxypyrene-1,3,6-trisulfonic acid (MPTS). The sequences of the Ab genes indicate that they evolved from a common precursor. We also used a variety of spectroscopic methods to probe the photophysics and dynamics of the Ab-MPTS complexes and found that they are similar to each other but distinct from previously characterized anti-MPTS Abs. Structural studies revealed that this difference likely results from a unique mode of binding in which MPTS is sandwiched between the side chain of PheH98, which interacts with the chromophore via T-stacking, and the side chain of TrpL91, which interacts with the chromophore via parallel stacking. The T-stacking interaction appears to mediate relaxation on the picosecond time scale, while the parallel stacking appears to mediate relaxation on an ultrafast, femtosecond time scale, which dominates the response. The anti-MPTS Abs thus not only demonstrate the simultaneous use of the two limiting modes of stacking for molecular recognition, but also provide a unique opportunity to characterize how dynamics might contribute to molecular recognition. Both types of stacking are common in proteins and protein complexes where they may similarly contribute to dynamics and molecular recognition.


Assuntos
Anticorpos Monoclonais/imunologia , Sítios de Ligação de Anticorpos , Pirenos/imunologia , Sequência de Aminoácidos , Animais , Anticorpos Monoclonais/química , Formação de Anticorpos , Cristalografia por Raios X , Camundongos , Modelos Moleculares
10.
Anal Biochem ; 574: 34-38, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30910701

RESUMO

One of the reasons it is difficult to analyze protein structural dynamics at atomic resolution using NMR is the molecular size of the protein. The selective amino acid labeling method is one of the effective methods that can solve this problem. In this study, to determine the site-specific conformational change in 3α-hydroxysteroid dehydrogenase from Pseudomonas sp. B-0831 (Ps3αHSD), which forms a dimer composed of two 26 kDa subunits, we expressed and purified 15N-Tyr labeled Ps3αHSD and its mutants, and analyzed the conformational change upon NADH binding. Using the Tyr substituted mutants, we first assigned the respective signals of four Tyr residues. In the titration experiments with NADH, the four Tyr signals changed uniquely; changes in chemical shift and signal broadening were observed. The NADH binding affinity, determined from the plots of the 1H and 15N chemical shift changes, was comparable to those reported previously. Together with the crystal structure information for Ps3αHSD in the NADH-free and -bound states, site-specific conformational changes including environmental changes could be deduced.


Assuntos
Isótopos de Nitrogênio/química , Ressonância Magnética Nuclear Biomolecular/métodos , Tirosina/química , 3-alfa-Hidroxiesteroide Desidrogenase (B-Específica)/química , 3-alfa-Hidroxiesteroide Desidrogenase (B-Específica)/metabolismo , NAD/metabolismo , Ligação Proteica , Conformação Proteica , Transdução de Sinais
11.
Appl Microbiol Biotechnol ; 103(11): 4253-4268, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30957199

RESUMO

Enzymatic hydrolysis of polyethylene terephthalate (PET) has been the subject of extensive previous research that can be grouped into two categories, viz. enzymatic surface modification of polyester fibers and management of PET waste by enzymatic hydrolysis. Different enzymes with rather specific properties are required for these two processes. Enzymatic surface modification is possible with several hydrolases, such as lipases, carboxylesterases, cutinases, and proteases. These enzymes should be designated as PET surface-modifying enzymes and should not degrade the building blocks of PET but should hydrolyze the surface polymer chain so that the intensity of PET is not weakened. Conversely, management of PET waste requires substantial degradation of the building blocks of PET; therefore, only a limited number of cutinases have been recognized as PET hydrolases since the first PET hydrolase was discovered by Müller et al. (Macromol Rapid Commun 26:1400-1405, 2005). Here, we introduce current knowledge on enzymatic degradation of PET with a focus on the key class of enzymes, PET hydrolases, pertaining to the definition of enzymatic requirements for PET hydrolysis, structural analyses of PET hydrolases, and the reaction mechanisms. This review gives a deep insight into the structural basis and dynamics of PET hydrolases based on the recent progress in X-ray crystallography. Based on the knowledge accumulated to date, we discuss the potential for PET hydrolysis applications, such as in designing waste stream management.


Assuntos
Enzimas/metabolismo , Polietilenotereftalatos/metabolismo , Poluentes Químicos da Água/metabolismo , Biotransformação , Enzimas/química , Hidrólise , Modelos Moleculares , Conformação Proteica , Rios/química
12.
J Plant Res ; 132(4): 461-471, 2019 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-31115709

RESUMO

Reproductive isolation, including prezygotic and postzygotic barriers, is a mechanism that separates species. Many species in the Nicotiana section Suaveolentes exhibit reproductive isolation in crosses with Nicotiana tabacum. In this study, we investigated whether the chromosome numbers and ploidy levels of eight Nicotiana suaveolens accessions are related to the reproductive isolation after crosses with N. tabacum by flow cytometry and chromosome analyses. Additionally, the internal transcribed spacer (ITS) regions of the eight N. suaveolens accessions were sequenced and compared with the previously reported sequences of 22 Suaveolentes species to elucidate the phylogenetic relationships in the section Suaveolentes. We revealed that four N. suaveolens accessions comprised 64 chromosomes, while the other four accessions carried 32 chromosomes. Depending on the ploidy levels of N. suaveolens, several types of reproductive isolation were observed after crosses with N. tabacum, including decreases in the number of capsules and the germination rates of hybrid seeds, as well as hybrid lethality and abscission of enlarged ovaries at 12-17 days after pollination. A phylogenetic analysis involving ITS sequences divided the eight N. suaveolens accessions into three distinct clades. Based on the results, we confirmed that N. suaveolens accessions vary regarding ploidy levels and reproductive isolation mechanisms in crosses with N. tabacum. These accessions will be very useful for revealing and characterizing the reproductive isolation mechanisms in interspecific crosses and their relationships with ploidy levels.


Assuntos
Nicotiana/genética , Ploidias , Isolamento Reprodutivo , Cromossomos de Plantas/genética , Cruzamentos Genéticos , DNA Intergênico/genética , Citometria de Fluxo , Flores/anatomia & histologia , Germinação/genética , Filogenia , Folhas de Planta/anatomia & histologia , Análise de Sequência de DNA , Nicotiana/anatomia & histologia , Nicotiana/fisiologia
13.
Biochemistry ; 57(36): 5289-5300, 2018 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-30110540

RESUMO

A cutinase-type polyesterase from Saccharomonospora viridis AHK190 (Cut190) has been shown to degrade the inner block of polyethylene terephthalate. A unique feature of Cut190 is that its function and stability are regulated by Ca2+ binding. Our previous crystal structure analysis of Cut190S226P showed that one Ca2+ binds to the enzyme, which induces large conformational changes in several loop regions to stabilize an open conformation [Miyakawa, T., et al. (2015) Appl. Microbiol. Biotechnol. 99, 4297]. In this study, to analyze the substrate recognition mechanism of Cut190, we determined the crystal structure of the inactive form of a Cut190 mutant, Cut190*S176A, in complex with calcium ions and/or substrates. We found that three calcium ions bind to Cut190*S176A, which is supported by analysis using native mass spectrometry experiments and 3D Reference Interaction Site Model calculations. The complex structures with the two substrates, monoethyl succinate and monoethyl adipate (engaged and open forms), presumably correspond to the pre- and post-reaction states, as the ester bond is close to the active site and pointing outward from the active site, respectively, for the two complexes. Ca2+ binding induces the pocket to open, enabling the substrate to access the pocket more easily. Molecular dynamics simulations suggest that a post-reaction state in the engaged form presumably exists between the experimentally observed forms, indicating that the substrate would be cleaved in the engaged form and then requires the enzyme to change to the open form to release the product, a process that Ca2+ can greatly accelerate.


Assuntos
Actinomycetales/enzimologia , Cálcio/metabolismo , Hidrolases de Éster Carboxílico/química , Hidrolases de Éster Carboxílico/metabolismo , Polietilenotereftalatos/metabolismo , Sequência de Aminoácidos , Sítios de Ligação , Biocatálise , Domínio Catalítico , Cristalografia por Raios X , Modelos Moleculares , Conformação Proteica
14.
J Biol Chem ; 292(52): 21397-21406, 2017 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-29101234

RESUMO

Xanthine oxidase (XOD), also known as xanthine dehydrogenase, is a rate-limiting enzyme in purine nucleotide degradation, which produces uric acid. Uric acid concentrations in the blood and liver exhibit circadian oscillations in both humans and rodents; however, the underlying mechanisms remain unclear. Here, we demonstrate that XOD expression and enzymatic activity exhibit circadian oscillations in the mouse liver. We found that the orphan nuclear receptor peroxisome proliferator-activated receptor-α (PPARα) transcriptionally activated the mouse XOD gene and that bile acids suppressed XOD transactivation. The synthesis of bile acids is known to be under the control of the circadian clock, and we observed that the time-dependent accumulation of bile acids in hepatic cells interfered with the recruitment of the co-transcriptional activator p300 to PPARα, thereby repressing XOD expression. This time-dependent suppression of PPARα-mediated transactivation by bile acids caused an oscillation in the hepatic expression of XOD, which, in turn, led to circadian alterations in uric acid production. Finally, we also demonstrated that the anti-hyperuricemic effect of the XOD inhibitor febuxostat was enhanced by administering it at the time of day before hepatic XOD activity increased. These results suggest an underlying mechanism for the circadian alterations in uric acid production and also underscore the importance of selecting an appropriate time of day for administering XOD inhibitors.


Assuntos
Ácidos e Sais Biliares/metabolismo , PPAR alfa/metabolismo , Xantina Oxidase/metabolismo , Animais , Ritmo Circadiano/fisiologia , Hepatócitos/metabolismo , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos ICR , Receptores Nucleares Órfãos/metabolismo , Purinas/metabolismo , Ácido Úrico/metabolismo , Xantina Desidrogenase/metabolismo , Xantina Oxidase/genética
15.
J Biol Chem ; 292(3): 1052-1060, 2017 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-27927989

RESUMO

Full activation of T cells and differentiation into effector T cells are essential for many immune responses and require co-stimulatory signaling via the CD28 receptor. Extracellular ligand binding to CD28 recruits protein-tyrosine kinases to its cytoplasmic tail, which contains a YMNM motif. Following phosphorylation of the tyrosine, the proteins growth factor receptor-bound protein 2 (Grb2), Grb2-related adaptor downstream of Shc (Gads), and p85 subunit of phosphoinositide 3-kinase may bind to pYMNM (where pY is phosphotyrosine) via their Src homology 2 (SH2) domains, leading to downstream signaling to distinct immune pathways. These three adaptor proteins bind to the same site on CD28 with variable affinity, and all are important for CD28-mediated co-stimulatory function. However, the mechanism of how these proteins recognize and compete for CD28 is unclear. To visualize their interactions with CD28, we have determined the crystal structures of Gads SH2 and two p85 SH2 domains in complex with a CD28-derived phosphopeptide. The high resolution structures obtained revealed that, whereas the CD28 phosphopeptide bound to Gads SH2 is in a bent conformation similar to that when bound to Grb2 SH2, it adopts a more extended conformation when bound to the N- and C-terminal SH2 domains of p85. These differences observed in the peptide-protein interactions correlated well with the affinity and other thermodynamic parameters for each interaction determined by isothermal titration calorimetry. The detailed insight into these interactions reported here may inform the development of compounds that specifically inhibit the association of CD28 with these adaptor proteins to suppress excessive T cell responses, such as in allergies and autoimmune diseases.


Assuntos
Antígenos CD28/química , Fosfopeptídeos/química , Domínios de Homologia de src/fisiologia , Antígenos CD28/genética , Antígenos CD28/metabolismo , Humanos , Fosfopeptídeos/genética , Fosfopeptídeos/metabolismo , Ligação Proteica/fisiologia , Linfócitos T/química , Linfócitos T/metabolismo , Termodinâmica
16.
Biochem Biophys Res Commun ; 503(1): 338-343, 2018 09 03.
Artigo em Inglês | MEDLINE | ID: mdl-29885838

RESUMO

Previous structural analyses have shown that R2R3, the minimum unit of the DNA-binding domain of the transcriptional factor c-Myb, is largely flexible in solution, and changes to a more rigid structure upon DNA binding. In this study, we evaluated the structural dynamics using the diffracted X-ray tracking method, in correlation with DNA-binding abilities under different salt conditions, and compared them with the previous results. The resultant curve of the mean square angular displacements (MSD) clearly showed that the flexibility of R2R3 was decreased upon DNA binding, and the DNA-binding energies determined using the angular diffusion coefficients were in good agreement with those determined using isothermal titration calorimetry. The results of the MSD curves also indicate that the translational length reduces by approximately half upon DNA binding.


Assuntos
DNA/metabolismo , Proteínas Proto-Oncogênicas c-myb/metabolismo , Sítios de Ligação , Calorimetria , Mutação , Ligação Proteica , Conformação Proteica , Domínios Proteicos , Proteínas Proto-Oncogênicas c-myb/química , Proteínas Proto-Oncogênicas c-myb/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Termodinâmica , Difração de Raios X
17.
Biochim Biophys Acta Proteins Proteom ; 1866(3): 415-425, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29246508

RESUMO

Endo-1,3-ß-glucanase from Cellulosimicrobium cellulans is composed of a catalytic domain and a carbohydrate-binding module. We have determined the X-ray crystal structure of the catalytic domain at a high resolution of 1.66Å. The overall fold is a sandwich-like ß-jelly roll architecture like the enzymes in the glycoside hydrolase family 16. The substrate-binding cleft has a length and a width of ~28 and ~15Å, respectively, which is thought to be capable of accommodating at least six glucopyranose units. Laminarihexaose was placed into the substrate-binding cleft, namely at the subsites +2 to -4 from the reducing end, and the complex structure was analyzed using molecular dynamics simulations (MD) and using a rotamer search of the pocket. During the MD simulations, the substrate fluctuated more than the enzyme, where the residues at the subsites toward the non-reducing end fluctuated more than those toward the reducing end. Little conformational change of the protein was observed for the subsites +1 and +2, indicating that the glucose's position could be tightly restricted inside the pocket. Substrate binding experiments using isothermal titration calorimetry showed that the binding affinity of laminaritriose was higher than that of laminaribiose and similar to those of other longer laminarioligosaccharides. Taken together, the substrates mainly bind to the subsites -1 to -3 with the highest affinity, while the part bound to the reducing end would be hydrolyzed.


Assuntos
Actinobacteria/enzimologia , Proteínas de Bactérias/química , Glucana Endo-1,3-beta-D-Glucosidase/química , Termodinâmica , Proteínas de Bactérias/metabolismo , Sítios de Ligação , Ligação Competitiva , Domínio Catalítico , Cristalografia por Raios X , Dissacarídeos/química , Dissacarídeos/metabolismo , Glucana Endo-1,3-beta-D-Glucosidase/metabolismo , Cinética , Simulação de Dinâmica Molecular , Oligossacarídeos/química , Oligossacarídeos/metabolismo , Ligação Proteica , Conformação Proteica , Especificidade por Substrato
18.
Appl Microbiol Biotechnol ; 102(23): 10067-10077, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30250976

RESUMO

Cut190 from Saccharomonospora viridis AHK190 (Cut190) is the only cutinase that exhibits inactive (Ca2+-free) and active (Ca2+-bound) states, although other homologous cutinases always maintain the active states (Ca2+-free and bound). The X-ray crystallography of the S176A mutant of Cut190* (Cut190_S226P/R228S) showed that three Ca2+ ions were bound at sites 1-3 of the mutant. We analyzed the roles of three Ca2+ ions by mutation and concluded that they play different roles in Cut190* for activation (sites 1 and 3) and structural and thermal stabilization (sites 2 and 3). Based on these analyses, we elucidated the mechanism for the conformational change from the Ca2+-free inactive state to the Ca2+-bound active state, proposing the novel Ca2+ effect on structural dynamics of protein. The introduction of a disulfide bond at Asp250 and Glu296 in site 2 remarkably increased the melting temperatures of the mutant enzymes by more than 20-30 °C (while Ca2+-bound) and 4-14 °C (while Ca2+-free), indicating that a disulfide bond mimics the Ca2+ effect. Replacement of surface asparagine and glutamine with aspartic acid, glutamic acid, or histidine increased the melting temperatures. Engineered mutant enzymes were evaluated by an increase in melting temperatures and kinetic values, based on the hydrolysis of poly(butylene succinate-co-adipate) and microfiber polyethylene terephthalate (PET). A combined mutation, Q138A/D250C-E296C/Q123H/N202H, resulted in the highest thermostability, leading to the maximum degradation of PET film (more than 30%; approximately threefold at 70 °C, compared with that of Cut190* at 63 °C).


Assuntos
Actinomycetales/enzimologia , Cálcio/metabolismo , Hidrolases de Éster Carboxílico/metabolismo , Proteínas Fúngicas/metabolismo , Polietilenotereftalatos/metabolismo , Asparagina/metabolismo , Dicroísmo Circular , Cristalografia por Raios X , Estabilidade Enzimática , Glutamina/metabolismo , Hidrólise , Íons/metabolismo , Estrutura Molecular , Conformação Proteica , Temperatura
19.
Biosci Biotechnol Biochem ; 82(10): 1702-1707, 2018 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-29912635

RESUMO

We overexpressed and purified 3α-hydroxysteroid dehydrogenase from Pseudomonas sp. B-0831 (Ps3αHSD) and its mutants where the active site residues known as the SYK triad, Ser114, Tyr153, and Lys157, were mutated. Ps3αHSD catalyzes the reaction by using a nucleotide cofactor. The NADH binding affinity of K157A mutant was much lower than that of the wild-type, mainly due to loss of a hydrogen bond. The decreased affinity would result in decreased kcat. Compared to the wild-type, the mutants S114A and Y153F showed higher Km and lower kcat values in both oxidation and reduction reactions. Simultaneous mutation of S114A and Y153F resulted in a significant decrease in kcat relative to the single mutant. These results are supported by the notion that Tyr153 is a catalytic base and Ser114 would be a substitute. Loss of hydrogen bonding with NADH upon the Y153F mutation resulted in increased enthalpy change, partially compensated by increased entropy change.


Assuntos
3-Hidroxiesteroide Desidrogenases/metabolismo , Pseudomonas/enzimologia , 3-Hidroxiesteroide Desidrogenases/química , Catálise , Domínio Catalítico , Dicroísmo Circular , Cristalografia por Raios X , Cinética , Mutação , Ligação Proteica , Conformação Proteica , Esteroides/metabolismo , Relação Estrutura-Atividade , Termodinâmica , Tirosina/metabolismo
20.
J Neurochem ; 142(6): 827-840, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28464229

RESUMO

Tryptophan hydroxylase 2 (TPH2) is the key enzyme in the synthesis of neuronal serotonin. Although previous studies suggest that TPH2 neuron-restrictive silencer element (NRSE) functions as a negative regulator dependent on neuron-restrictive silencer factor (NRSF) activity, the underlying mechanisms are yet to be fully elucidated. Here, we show a detailed analysis of the NRSE-mediated repression of the human TPH2 (hTPH2) promoter activity in RN46A cells, a cell line derived from rat raphe neurons. Quantitative real-time RT-PCR analysis revealed the expression of serotonergic marker genes (Mash1, Nkx2.2, Gata2, Gata3, Lmx1b, Pet-1, 5-Htt, and Vmat2) and Nrsf gene in RN46A cells. Tph1 mRNA is the prevalent form expressed in RN46A cells; Tph2 mRNA is also expressed but at a lower level. Electrophoretic mobility shift assays and reporter assays showed that hTPH2 NRSE is necessary for the efficient DNA binding of NRSF and for the NRSF-dependent repression of the hTPH2 promoter activity. The hTPH2 promoter activity was increased by knockdown of NRSF, or over-expression of the engineered NRSF (a dominant-negative mutant or a DNA-binding domain and activation domain fusion protein). MS-275, a class I histone deacetylase (HDAC) inhibitor, was found to be more potent than MC-1568, a class II HDAC inhibitor, in enhancing the hTPH2 promoter activity. Furthermore, treatment with the ubiquitin-specific protease 7 deubiquitinase inhibitors, P-22077 or HBX 41108, increased the hTPH2 promoter activity. Collectively, our data demonstrate that the hTPH2 NRSE-mediated promoter repression via NRSF involves class I HDACs and is modulated by the ubiquitin-specific protease 7-mediated deubiquitination and stabilization of NRSF.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA